Physics 4311: Thermal Physics - Exam 1

Thursday, March 6, 2025

150 point total

Problem 1: Short questions (10 points each = 30 points)

- a) You have 5 independent magnetic atoms. The magnetic moment of each atom points "up" with probability 3/4 or "down" with probability 1/4. Find the probability that the moments of 3 of the 5 atoms point "down" while the moments of the other 2 atoms point "up".
- b) A box of volume V contains an ideal gas in equilibrium at temperature T. The gas is now isothermally compressed to volume V/2. Find the ratio $\langle v_f \rangle / \langle v_i \rangle$ between the average speeds of the particles before and after the compression.
- c) A container contains a mixture of two ideal gases in equilibrium at temperature T, consisting of N atoms of type A of mass m_A and N atoms of type B of mass m_B with $m_A > m_B$. A small hole is made in the wall of the container, and the gas starts escaping. After some time, the number of A atoms remaining in the box is **smaller than / equal to / larger than** the number of B atoms remaining (circle one). Give a short (one or two sentence) explanation.

Problem 2: Low-speed molecules (40 points)

Consider a three-dimensional ideal gas of molecules of mass m at temperature T. The goal of this problem is to estimate the fraction of molecules whose kinetic energy is lower than $0.05k_BT$.

- a) Find the speed v_{max} of a molecule of kinetic energy $0.05k_BT$ in terms of T and m.
- b) Write down the three-dimensional Maxwell-Boltzmann velocity distribution $P(v_x, v_y, v_z)$
- c) Write down an integral for the probability of a molecule to have a speed below $v_{\rm max}$. Transform to spherical coordinates.
- d) Solve the integral for the probability of a molecule to have a speed below v_{max} . **Hint:** The integral over v cannot be solved in closed form. As the energy is below $0.05k_BT$, the Boltzmann factor can be approximated, $e^{-mv^2/(2k_BT)} \approx 1$.

Problem 3: Two coupled Ising spins (40 points)

Consider two coupled spins that can point either up or down. They are described by spin variables S_1 and S_2 that each can take the values +1 (up) or -1 (down). The energy of the system is given by $E = -JS_1S_2$ with J > 0. The system is in thermal equilibrium at temperature T.

- a) Write down all microstates of the system and their energies.
- b) Calculate the probabilities of finding the system in each of the microstates.
- c) Calculate the average energy as a function of T.
- d) What is the value of the average energy in the limit $T \to 0$?
- e) What is the value of the average energy in the limit $T \to \infty$?

Problem 4: Gas expansion (40 points)

An ideal gas of N atoms is taken quasi-statically from point A to B (at constant volume) and then from B to C (at constant temperature) as shown in the pressure-volume diagram. Express all answers in terms of N, k_B , p_0 , and V_0 .

- a) Find the temperatures $T_A,\,T_B$ and T_C at points A, B, and C.
- b) How much work is done on the gas from A to B?
- c) How much heat is flowing into the gas from A to B?
- d) How much work is done on the gas during the isothermal expansion from B to C?
- e) How much heat is flowing into the gas from B to C?

