Physics 4311: Thermal Physics - Exam 2

Thursday, Apr 16, 2025

150 point total + 10 BONUS points

Problem 1: Thermodynamic potentials and Maxwell relations (30 points)

Consider a magnetic material for which the first law reads dU = T dS - m dB. You can treat the magnetization m and the magnetic field (induction) B as scalars.

- a) Derive the enthalpy, Helmholtz free energy, and Gibbs free energy as well as their total differentials by performing the appropriate Legendre transformations.
- b) Derive all four Maxwell relations for this magnetic material.

Problem 2: Heat capacity at constant tension force (25 points)

The equation of state of an elastic rod can be approximated by $f = \alpha T(L - L_0)$ where f is the tension force, T is the temperature, and L is the length. α and the unstretched length L_0 are constants. The internal energy of the rod is given by $U = C_L T$ where C_L is another constant. Starting from the first law, find the heat capacity C_f at fixed tension force (in terms of L and the constants).

Problem 3: Heat pump (25 points)

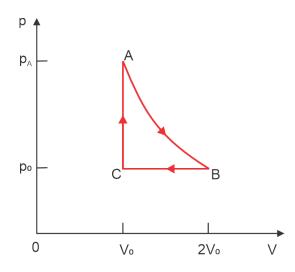
A house is heated by an ideal heat pump consisting of a Carnot cycle (running backwards). Over the period of an hour, it removes heat Q_l from the outside at the lower temperature T_l and discharges heat Q_h into the house at the (higher) room temperature T_h , consuming electric energy (work) E. The amount of heat leaking out of the house through walls and windows per hour is $Q_{loss} = A(T_h - T_l)$ where A is a constant. The heat pump has run for a while, and the inside of the house has reached a steady state.

Derive an expression for the energy E required to run the heat pump (in the steady state) as a function of T_l , T_h , and A.

Hint: You may start from the efficiency of a Carnot cycle running forward (as heat engine), $|W|/Q_h = -W/Q_h = 1 - T_l/T_h$, or some equivalent relation for the Carnot cycle.

Problem 4: Heat engine (70 points + 10 BONUS points)

A heat engine uses an ideal gas of N atoms as working medium. It undergoes the cycle shown in the figure which consists of an **adiabatic** expansion $(A \to B)$, an **isobaric** compression $(B \to C)$, and an **isochoric** heating $(C \to A)$.



- a) Using the equation for an adiabatic curve, find the pressure p_A in terms of p_0 .
- b) Find the temperatures T_A , T_B , and T_C at points A, B, and C in terms of p_0 , V_0 , and N.
- c) Compute the change in internal energy ΔU , the work ΔW , and the absorbed heat ΔQ for the adiabatic process $A \to B$ (in terms of p_0, V_0).
- d) Compute ΔU , ΔW , and ΔQ for the isobaric process $B \to C$ (in terms of p_0, V_0).
- e) Compute ΔU , ΔW , and ΔQ for the isochoric process $C \to A$ (in terms of p_0, V_0).
- f) (10 BONUS points) The efficiency of the heat engine is defined as $\eta = |W|/Q_{in}$, where Q_{in} is the total "input" heat that is absorbed by the engine (i.e. heat terms that are positive). |W| is the total work done by the engine. Compute the efficiency.