Physics 4311: Thermal Physics - Homework 2

due date: Tuesday, Feb 11, 2025, please upload your solution as a pdf on Canvas

Problem 1: Boltzmann factors (10 points)

- a) Compute the characteristic thermal energy k_BT at room temperature.
- b) Convert the result to electronvolts (eV)
- c) The dissociation (binding) energy of a hydrogen molecule is about 4.5 eV. Do you expect hydrogen molecules to be appreciably dissociated at room temperature?
- d) Estimate the temperature at which hydrogen molecules start dissociating appreciably!
- e) Do you expect the rotational energy levels of a diatomic molecule to be excited at room temperature? (The excitation energies are about 10^{-4} eV.)

Problem 2: Impurity in solid (30 points)

An impurity atom in a solid can occupy two different lattice positions. In the first position, it has an energy $E_1 = \epsilon$. In the second position, its energy is $E_2 = 2\epsilon$. The solid and impurity are in thermal equilibrium at temperature T.

- a) Compute the probability for the impurity atom to be in position 1.
- b) Compute the probability for the impurity atom to be in position 2.
- c) What is the average energy $\langle E \rangle$ of the impurity atom as function of the temperature?
- d) Determine the limiting values of $\langle E \rangle$ for $T \to 0$ and $T \to \infty$.
- e) Compute the heat capacity $C = d\langle E \rangle / dT$ as function of T.
- f) Determine the limiting values of C for $T \to 0$ and $T \to \infty$.
- g) Find the maximum of C. (This is called the Schottky anomaly.)
- h) Sketch or plot the $\langle E \rangle$ vs. T and C vs. T curves. Qualitative hand sketches are OK, but they should reflect the features you found in parts d), f), and g).