due date Thursday, Sep 12, 2024

Model of a fishery (100 points )

The equation

$$\dot{N} = rN\left(1 - \frac{N}{K}\right) - H\frac{N}{A+N}$$

provides a simple model of a fishery. N is the number of fish, and r, K, H, A are positive parameters. In the absence of fishing (H = 0) the population grows with an initial rate r to a maximum population of  $N_{max} = K$ . The effect of fishing is modelled by the second term. If only few fish are there, they are taken at a rate HN/A proportional to the number of fish. For large populations, the fishermen cannot keep up, they can fish at a maximum rate H independent of the population.

- 1. Give a biological interpretation of the parameter A. What does it measure?
- 2. Show that the system can be rewritten in dimensionless form as

$$dx/d\tau = x(1-x) - h\frac{x}{(a+x)}$$

for suitably defined dimensionless quantities  $x, \tau, a, h$ .

- 3. Find all fixed points of the system. Show that it can have one, two, or three fixed points, depending on the values of a and h.
- 4. Determine the stability of the fixed points. Explain their meaning in terms of the fishery problem.
- 5. Draw the stability diagram of the system in the h-a parameter space. This means, show which fixed point the system approaches for each point in the h-a plane.