Physics 6311: Statistical Mechanics - Homework 4

due date: Tuesday, Sep 19, 2023
Problem 1: Maxima of entropy (10 points)
Consider the entropy of a discrete probability distribution given in terms of the probabilities p_{i} $(i=1 \ldots N)$. Determine which p_{i} lead to the maximum entropy under the following constraints (Hint: Use Lagrange multipliers to enforce the constraints.):
a) Normalization $\sum_{i} p_{i}=1$
b) Normalization $\sum_{i} p_{i}=1$ and fixed average $\langle a\rangle=\sum_{i} p_{i} a_{i}$ of a quantity A with values a_{i}.

Problem 2: Shannon entropy of independent random variables (10 points)

Consider two discrete, jointly distributed random variables X and Y with values x_{i} and y_{j}, respectively. The joint probability of X having the value x_{i} and Y having the value y_{j} is $p_{i j}$.
a) Show that if X and Y are statistically independent, then the Shannon entropy S_{s} of the joint distribution is the sum of the Shannon entropies of the reduced distributions of X and Y
b) Generalize the derivation to the case on M jointly distributed variables $X^{(m)}$ with $m=1 \ldots M$.

Problem 5: Shannon entropy of N spin-1 atoms (5 points)

Consider a lattice with $N \gg 1$ spin- 1 atoms. Each atom can be in one of the three spin states $S_{z}=-1,0,+1$ with equal probability. The states of different atoms are independent of each other. Calculate the Shannon entropy of this system.

Problem 4: Atoms on a lattice (15 points)

Consider a lattice having N regular lattice sites as well as N interstitial lattice sites. The lattice is occupied by N identical atoms. An atom on a regular site has energy 0 while an atom on an interstitial site has energy ϵ. Use the microcanonical ensemble to analyze this system.
a) Determine the number Ω of microstates as a function of the number N_{i} of atoms on interstitial sites.
b) Relate N_{i} to the energy E and compute the temperature T as a function of N and E.
c) Express E as a function of T and N, and find the specific heat.

