Physics 6311: Test preparation homework 7

due date: Friday, Oct 10, 2023

Problem 1: Quantum mechanical three-level system (12 points)

A quantum-mechanical system has three energy eigenstates $|0\rangle, |-1\rangle$ and $|1\rangle$ with energies $\epsilon_0 = 0$, $\epsilon_1 = \epsilon_{-1} = \epsilon$ where $\epsilon < 0$.

- a) Use the canonical ensemble to determine the average energy and the heat capacity as functions of temperature.
- b) Compute the entropy and find its behavior in the limits of low and high temperatures.
- c) Calculate the occupation probabilities p_0, p_1 and p_{-1} of the three levels as functions of temperature.
- d) At what temperature is $p_0/p_1 = 2$? Discuss the sign of this temperature.

Problem 2: Broadening of spectral lines (16 points)

The atoms of a star emit light. The emission frequency of a particular element is ν_0 if the atom is a rest. Due to the thermal motion the observed frequency is shifted (Doppler effect) to

$$\nu = \nu_0 \left(1 - \frac{v}{c} \cos \theta \right)$$

where v is the velocity of the atom and θ is the angle between the directions of motion and observation. Assume the atoms in the star's atmosphere have mass m and can be approximately described as a classical ideal gas at temperature T.

- a) Compute the mean observed frequency by directly averaging ν over the appropriate velocity distribution.
- b) Compute the variance of the observed frequency.
- c) Derive an expression for the intensity distribution $\rho(\nu)$ of the spectral line, i.e., the probability density of the observed frequency. Compare with the results of parts a) and b). [Hint: This problem can be solved either in spherical coordinates or in cartesian coordinates. The latter approach may be a bit easier.)

Problem 3: Ideal gas in linear potential well (12 points)

Consider a classical ideal gas of N non-interacting particles at temperature T. The particles are subject to the potential energy $U(\vec{r}) = A|\vec{r}|$ (A is a constant).

- a) Calculate the partition function and the Helmholtz free energy of the gas.
- b) Determine the internal energy and the specific heat. Compare with the equipartition theorem.
- c) Calculate the particle density $n(\vec{r})$ of the gas (particles per volume) as a function of the position. [Hint: the particle density $n(\vec{r})$ can be related to a reduced probability density of the single-particle phase space density $\rho(\vec{r}, \vec{p})$.]