Problem 1: Particle at random position (60 points)

Consider a particle in one dimension restricted to the positive x-axis. Its position x is a random variable with probability density $P_X(x) \sim \exp(-ax)$ where a is a positive constant.

- a) Find the normalization constant of the probability density $P_X(x)$.
- b) The potential energy of the particle is given by $V(x) = (1/2)kx^2$ with k being a constant. Calculate the average force acting on the particle.
- c) Find the probability density $P_V(V)$ of the potential energy.

Problem 2: Ising spins in magnetic field (80 points + 10 bonus)

Consider two non-interacting, distinguishable Ising spins in a magnetic field described by the Hamiltonian $H = -h(S_1 + S_2)$, Here S_1, S_2 can take values ± 1 and h is a constant proportional to the magnetic field.

- a) Using the canonical ensemble, find the partition function and the free energy as functions of temperature the T and h.
- b) Calculate the average total magnetization $M = \langle S_1 + S_2 \rangle$ as well as the magnetic susceptibility $\chi = (\partial M/\partial h)_T$ at h = 0.

Now assume that the two spins have a ferromagnetic interaction J > 0, i.e., the Hamiltonian now reads $H = -h(S_1 + S_2) - JS_1S_2$.

- c) Using the canonical ensemble, find the partition function and the free energy as functions of T and h (Hint: What are the possible states of the 2-spin system?)
- d) Calculate M and χ for the interacting spin pair as in part b).
- e) (10 bonus points) Discuss the behavior of χ for $J \ll k_B T$ and $J \gg k_B T$ and compare with the result in part b).

Problem 3: Ideal gas in a linear potential well (60 points)

Consider a non-relativistic classical ideal gas of N indistinguishable particles of mass m at temperature T in a three-dimensional potential well of the form $E_{pot}(\vec{r}) = B|\vec{r}|$ (B is a constant).

- a) Calculate the canonical partition function and the free energy of the gas.
- b) Determine the average energy and the specific heat. Compare with the equipartition theorem.
- c) Calculate how the particle density $n(\vec{r})$ changes with \vec{r} . (Hint: the particle density $n(\vec{r})$ is a reduced probability density of the phase space density $\rho(\vec{r}, \vec{p})$.)

$$\begin{split} &\int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-x_0)^2/\sigma^2} = (2\pi\sigma^2)^{1/2} \\ &\int_{0}^{\infty} dx \, x e^{-ax} = 1/a^2, \qquad \int_{0}^{\infty} dx \, x^2 e^{-ax} = 2/a^3, \qquad \int_{0}^{\infty} dx \, x^3 e^{-ax} = 6/a^4, \qquad \int_{0}^{\infty} dx \, x^4 e^{-ax} = 24/a^5 \end{split}$$