Problem 1: Spin-1/2 in a magnetic field (60 points)

Consider a single $S=1 / 2$ quantum spin in a magnetic field $\mathbf{B}=B \hat{\mathbf{k}}$ and coupled to a heat bath at temperature T. The Hamiltonian is given by

$$
H=-B g \mu_{B} S_{z}, \quad S_{z}= \pm \frac{1}{2}
$$

Here g is the gyromagnetic factor and μ_{B} is the Bohr magneton.
a) Use the canonical ensemble to calculate the partition function and the Helmholtz free energy.
b) Calculate the magnetization $m=g \mu_{B}\left\langle S_{z}\right\rangle$ as a function of T and B.
c) Find the values of m for $T=0$ and $T \rightarrow \infty$ at fixed nonzero B.
d) Calculate the magnetic susceptibility $\chi=(\partial m / \partial B)_{T}$
e) Find the behavior (not just the limit) of χ at high temperatures.

Problem 2: One-dimensional polymer (70 points)

A one-dimensional polymer is formed by connecting N ellipsoid-shaped molecules into a one-dimensional chain. Each molecule has two ways of connecting to the polymer (as shown in the figure). It can align either its long axis (length $2 a$) or its short axis (length a) with the direction of the polymer chain. A molecule connected along the long axis has energy ϵ_{0}, a molecule connected along the short axis has energy $\epsilon_{0}+\epsilon$ with $\epsilon>0$.

a) Using the canonical ensemble, find the partition function of this polymer as a function of temperature T.
b) Find the probabilities p_{l} and p_{s} that a given molecule is connected along the long axis and the short axis, respectively.
c) Calculate the average length L of the polymer as a function of temperature and number of molecules.
d) What is value of the average length at $T=0$ and $T \rightarrow \infty$?
e) At what temperature is the average length $L=5 a N / 4$. What does the sign of T mean?

Problem 3: Nonharmonic classical ideal gas (70 points)

Consider a gas of N non-interacting, indistinguishable, classical particles in a cubic box of linear size L. The particles have non-harmonic energy-momentum relation, i.e., the Hamiltonian reads

$$
H=\sum_{i=1}^{N} A\left|\overrightarrow{p_{i}}\right|^{s} \quad(A, s>0)
$$

a) Calculate the canonical partition function and the Helmholtz free energy of this gas. [Hint: Work in spherical coordinates.]
b) Calculate the caloric equation of state (energy-temperature relation) and the specific heat C_{V} at constant volume. Compare to the equipartition theorem.
c) Calculate the pressure p and find the thermodynamic equation of state (relation between p, V, T).
d) Compute the specific heat C_{p} at constant pressure.

$$
\begin{gathered}
\frac{d}{d x} \tanh (x)=1-\tanh ^{2}(x)=1 / \cosh ^{2}(x) \\
\int_{0}^{\infty} d x x^{2} e^{-A x^{s}}=\frac{1}{s} A^{-3 / s} \Gamma(3 / s) \quad \text { (} \Gamma \text { denotes the Gamma function.) }
\end{gathered}
$$

