9.1
a) $\quad S=0 \quad$ boson

$$
\begin{array}{lll}
n_{a}=2 & n_{b}=0 & E=2 \varepsilon \\
n_{a}=1 & n_{b}=1 & E=0 \\
n_{a}=0 & n_{b}=2 & E=-2 \varepsilon
\end{array}
$$

partition fungo

$$
\begin{aligned}
& Q=e^{-\beta 2 \varepsilon}+1+e^{\beta 2 \varepsilon} \\
& Q=1+2 \cosh (2 \beta \varepsilon) \\
& A=-k_{B} T \ln Q=-k_{B} T \ln (1+2 \cosh (2 \beta \varepsilon)) \\
& \langle E)=-\frac{\partial \ln Q}{\partial B}=\frac{-4 \varepsilon \sinh \left(2 p_{\varepsilon}\right)}{1+2 \cosh \left(2 p_{\varepsilon}\right)} \\
& S=\frac{1}{T}(E-A)=\ln \left[-\frac{4 \beta \varepsilon \sinh \left(2 \beta_{\varepsilon}\right)}{1+2 \cosh \left(2 p_{1}\right)}+\ln \left(1+2 \cosh \left(2 p_{\varepsilon}\right)\right)\right.
\end{aligned}
$$

$S=\frac{1}{2}$ fermions soke in spin 1 state

$$
\text { Paul: } \quad \begin{aligned}
& \text { only } \quad n_{2}=1, n_{b}=1 \text { slate } \\
& \text { allowed }
\end{aligned}
$$

$$
Q=1
$$

$$
A=0
$$

$$
I=0
$$

$$
s=0
$$

b) $S=0$ bosons

$$
\begin{array}{lll}
n_{a}=2 & n_{0}=0 & E=2 \varepsilon \\
h_{a}=1 & n_{b}=1 & E=u \\
n_{a}=0 & n_{b}=2 & E=-2 \varepsilon
\end{array}
$$

Canon: cul probabilitis

$$
\begin{aligned}
& P_{1}=\frac{e^{-\beta 2 \varepsilon}}{e^{\beta 2 \varepsilon}+e^{-\beta 2 \varepsilon}+e^{-\beta u}} \\
& D_{2}=\frac{e^{-\beta U}}{e^{\beta 2 \varepsilon}+e^{-\beta 2 \varepsilon}+e^{-\beta u}} \\
& P_{3}=\frac{e^{\beta 2 \varepsilon}}{e^{\beta 2 \varepsilon}+e^{-\beta 2 \varepsilon}+e^{-\beta u}}
\end{aligned}
$$

poritive supproises stake $\left(h_{a}=1, h_{b}=1\right)$
hegalive poeles stare $\left(h_{a}=1, h_{b}=1\right)$

- for $U \rightarrow-\infty$ this slace becones gronne stale
- Lor $u \rightarrow \infty$ stak goa $1+E \rightarrow \infty$ and drops out of Therms A quanics

9.2

Quantum corrections to classical ideal gas

The classical (Boltzmann) limit corresponds to

$$
\langle n\rangle=\frac{1}{e^{\beta(\epsilon-\mu)}+\delta} \ll 1
$$

Expanding the denominator gives

$$
\langle n\rangle=e^{-\beta(\epsilon-\mu)}\left(1-\delta e^{-\beta(\epsilon-\mu)}\right)+O\left[\left(e^{-\beta(\epsilon-\mu)}\right)^{3}\right]
$$

Average particle number and internal energy read

$$
\begin{aligned}
N & =\int d \epsilon a(\epsilon) e^{-\beta(\epsilon-\mu)}\left(1-\delta e^{-\beta(\epsilon-\mu)}\right) \\
U & =\int d \epsilon \epsilon a(\epsilon) e^{-\beta(\epsilon-\mu)}\left(1-\delta e^{-\beta(\epsilon-\mu)}\right)
\end{aligned}
$$

with

$$
a(\epsilon)=\frac{V}{2 \pi^{2}}\left(\frac{m}{\hbar^{2}}\right)^{3 / 2} \sqrt{2 \epsilon}
$$

The energy per particle is

$$
\begin{aligned}
\frac{U}{N} & =\frac{\int d \epsilon \epsilon^{3 / 2} e^{-\beta \epsilon}\left(1-\delta e^{-\beta(\epsilon-\mu)}\right)}{\int d \epsilon \epsilon^{1 / 2} e^{-\beta \epsilon}\left(1-\delta e^{-\beta(\epsilon-\mu)}\right)} \\
& =k_{B} T \frac{(3 / 4) \sqrt{\pi}\left(1-\delta e^{\beta \mu} / 2^{5 / 2}\right)}{(1 / 2) \sqrt{\pi}\left(1-\delta e^{\beta \mu} / 2^{3 / 2}\right)} \\
& =\frac{3}{2} k_{B} T\left(1+\delta e^{\beta \mu} \sqrt{2} / 8\right)
\end{aligned}
$$

The factor $e^{\beta \mu}$ in the correction term can be calculated in lowest order, i.e. for the classical ideal gas.

$$
e^{\beta \mu}=\frac{N}{V}\left(\frac{2 \pi \hbar^{2}}{m k_{B} T}\right)^{3 / 2}=\frac{N}{V} \lambda^{3}
$$

where λ is the thermal wave length. Therefore

$$
\frac{U}{N}=\frac{3}{2} k_{B} T\left(1+\delta N \lambda^{3} \sqrt{2} /(8 V)\right)
$$

