Collective modes at a disordered quantum phase transition

Thomas Vojta

Department of Physics, Missouri University of Science and Technology

Outline

- Collective modes: Goldstone and amplitude (Higgs)
- Superfluid-Mott glass quantum phase transition
- Fate of the collective modes at the superfluid-Mott glass transition
- Conclusions

Martin Puschmann

Jack Crewse

Cameron Lerch

José Hoyos

DMR-1828489

OAC-1919789

João Getelina

Spontaneous symmetry breaking

Does a symmetric Hamiltonian imply a symmetric equilibrium state?

- world of this pencil is completely isotropic, all directions are equal
- symmetry is lost when pencil falls over, now only one direction holds
- state of lowest energy has lower symmetry than system

Rotational symmetry has been broken spontaneously!

Broken symmetries and collective modes

- systems with broken continuous symmetry:
 - planar magnet breaks O(2) rotation symmetry
 - superfluid wave function breaks U(1) symmetry
- Amplitude mode: corresponds to fluctuations of order parameter amplitude
- Goldstone (phase) mode: corresponds to fluctuations of order parameter phase
- Amplitude mode can be considered condensed matter analogue of Higgs boson

Goldstone theorem:

When a continuous symmetry is spontaneously broken, massless Goldstone modes appear.

"Mexican hat" potential for order parameter in symmetry-broken phase, $F = t \mathbf{m}^2 + u \mathbf{m}^4$

What is the fate of the Goldstone and Higgs modes near a disordered quantum phase transition?

- Collective modes: Goldstone and Higgs
- Superfluid-Mott glass quantum phase transition
- Fate of the collective modes at the superfluid-Mott glass transition
- Conclusions

Disordered interacting bosons

Ultracold atoms in optical potentials:

- disorder: speckle laser field
- interactions: tuned by Feshbach resonance and/or density

F. Jendrzejewski et al., Nature Physics 8, 398 (2012)

Disordered superconducting films:

- energy gap in **insulating** as well as **superconducting** phase
- preformed Cooper pairs ⇒ superconducting transition is bosonic

Sherman et al., Phys. Rev. Lett. 108, 177006 (2012)

Bose-Hubbard model

Bose-Hubbard (quantum rotor) Hamiltonian in two (and three) space dimensions:

$$H = \frac{U}{2} \sum_{i} (\hat{n}_i - \bar{n}_i)^2 - \sum_{\langle i,j \rangle} J_{ij} (a_i^{\dagger} a_j + h.c.)$$

- ullet superfluid ground state if **Josephson couplings** J_{ij} dominate
- ullet insulating ground state if **charging energy** U dominates
- chemical potential $\mu_i = U \bar{n}_i$

Particle-hole symmetry:

• large integer filling $\bar{n}_i = k$ with integer $k \gg 1$ \Rightarrow Hamiltonian invariant under $(\hat{n}_i - \bar{n}_i) \rightarrow -(\hat{n}_i - \bar{n}_i)$

Phase diagrams

Weichman et al., Phys. Rev. B 7, 214516 (2008)

clean

random potentials

random couplings

Monte Carlo simulations

ullet map Hamiltonian onto classical (d+1)-dimensional XY model for particle-hole symmetric case

$$H_{\mathrm{cl}} = -J_{ au} \sum_{i,t} \epsilon_{i} \mathbf{S}_{i,t} \cdot \mathbf{S}_{i,t+1} - J_{s} \sum_{\langle i,j \rangle,t} \epsilon_{i} \epsilon_{j} \mathbf{S}_{i,t} \cdot \mathbf{S}_{j,t}$$

- disorder: **site dilution** (fraction p of lattice sites randomly removed)
- combine Wolff cluster algorithm and conventional Metropolis updates
- \bullet system sizes up to $L=150,\ L_{\tau}=1792$ in (2+1)d and $L=80,\ L_{\tau}=320$ in (3+1)d
- ullet several dilutions from p=0 to lattice percolation threshold p_c
- averages over 10 000 to 50 000 disorder configurations
- ansiotropic finite-size scaling analysis

columnar disorder in classical XY model, correlated in imaginary time

Thermodynamic critical behavior

- clean system violates Harris criterion $d\nu > 2$
- disordered system in new universality class
- conventional power-law critical behavior
- universal critical exponents for dilutions 0
- disordered ν exponents fulfill $d\nu > 2$
- Griffiths singularities exponentially weak
 (see J. Phys. A 39, R143 (2006), PRL 112, 075702 (2014))

(2+1)D exponents

exponent	clean	disordered
\overline{z}	1	1.52
u	0.6717	1.16
eta/ u	0.518	0.48
γ/ u	1.96	2.52

PRB **94**, 134501 (2016)

(3+1)D exponents

exponent	clean	disordered
\overline{z}	1	1.67
u	0.5	0.90
eta/ u	1	1.09
γ/ u	2	2.50

PRB 98, 054514 (2018)

- Collective modes: Goldstone and amplitude (Higgs)
- Superfluid-Mott glass quantum phase transition
- Fate of the collective modes at the superfluid-Mott glass transition
- Conclusions

Amplitude mode: scalar susceptibility

parameterize order parameter fluctuations into amplitude and direction

$$\vec{\phi} = \phi_0 (1 + \rho) \hat{\mathbf{n}}$$

Amplitude mode is associated with scalar susceptibility

$$\chi_{\rho\rho}(\vec{x},t) = i\Theta(t) \langle [\rho(\vec{x},t), \rho(0,0)] \rangle$$

Monte-Carlo simulations compute imaginary time correlation function

$$\chi_{\rho\rho}(\vec{x},\tau) = \langle \rho(\vec{x},\tau)\rho(0,0)\rangle$$

- Wick rotation required: analytical continuation from imaginary to real times/frequencies
 - \Rightarrow maximum entropy method to compute spectral function $A(\vec{q},\omega)=\chi''_{\rho\rho}(\vec{q},\omega)/\pi$

Analytic continuation - maximum entropy method

• Matsubara susceptibility vs. spectral function

$$\chi_{\rho\rho}(\vec{q}, i\omega_m) = \int_0^\infty d\omega A(\vec{q}, \omega) \frac{2\omega}{\omega_m^2 + \omega^2}$$

Maximum entropy method:

- inversion is ill-posed problem, highly sensitive to noise
- fit $A(\vec{q},\omega)$ to $\chi_{\rho\rho}(\vec{q},i\omega_m)$ MC data by minimizing $Q=\tfrac{1}{2}\sigma^2-\alpha S$
- parameter α balances between fit error σ^2 and entropy S of $A(\vec{q}, \omega)$, i.e., between fitting information and noise
- best α value chosen by L-curve method [see Bergeron et al., PRE 94, 023303 (2016)]

Amplitude mode in clean undiluted system

Scaling form (in 2d): $\chi_{\rho\rho}(0,\omega) = |r|^{3\nu-2}X(\omega|r|^{-\nu})$ [Podolsky + Sachdev, PRB 86, 054508 (2012)]

- sharp Higgs peak in spectral function
- ullet Higgs energy (mass) ω_H scales as expected with distance from criticality r

Amplitude mode in disordered system

- ullet spectral function shows broad peak near $\omega=1$
- peak is noncritical: does not move as quantum critical point is approached
- amplitude fluctuations not soft at criticality
- violates expected scaling form $\chi_{\rho\rho}(0,\omega)=|r|^{(d+z)\nu-2}X(\omega|r|^{-z\nu})$

Note: $(d+z)\nu - 2 > 0$

What is the reason for the absence of a sharp amplitude mode at the superfluid-Mott glass transition?

Quantum mean-field theory

$$H = \frac{U}{2} \sum_{i} \epsilon_{i} (\hat{n}_{i} - \bar{n}_{i})^{2} - J \sum_{\langle i,j \rangle} \epsilon_{i} \epsilon_{j} (a_{i}^{\dagger} a_{j} + h.c.)$$

ullet truncate Hilbert space: keep only states $|\bar{n}-1
angle$, $|\bar{n}
angle$, and $|\bar{n}+1
angle$ on each site

Variational wave function:

$$|\Psi_{MF}\rangle = \prod_{i} |g_{i}\rangle = \prod_{i} \left[\cos\left(\frac{\theta_{i}}{2}\right) |\bar{n}\rangle_{i} + \sin\left(\frac{\theta_{i}}{2}\right) \frac{1}{\sqrt{2}} \left(e^{i\phi_{i}}|\bar{n}+1\rangle_{i} + e^{-i\phi_{i}}|\bar{n}-1\rangle_{i}\right) \right]$$

ullet locally interpolates between **Mott insulator**, heta=0, and **superfluid limit**, $heta=\pi/2$

Mean-field energy:

$$E_0 = \langle \Psi_{MF} | H | \Psi_{MF} \rangle = \frac{U}{2} \sum_{i} \epsilon_i \sin^2 \left(\frac{\theta_i}{2} \right) - J \sum_{\langle ij \rangle} \epsilon_i \epsilon_j \sin(\theta_i) \sin(\theta_j) \cos(\phi_i - \phi_j)$$

 \bullet solved by minimizing E_0 w.r.t. $\theta_i \Rightarrow$ coupled nonlinear equations

Mean-field theory: local order parameter $m_i = \langle a_i \rangle = \sin(\theta_i) e^{i\phi_i}$

Note: Mean-field theory fails close to critical point, creates **smeared phase transition**:

Mean-field theory: excitations

• define local excitations (orthogonal to $|g_i\rangle$, OP phase fixed at 0)

$$|g_{i}\rangle = \cos\left(\frac{\theta_{i}}{2}\right)|\bar{n}\rangle_{i} + \sin\left(\frac{\theta_{i}}{2}\right)\frac{1}{\sqrt{2}}(|\bar{n}+1\rangle_{i} + |\bar{n}-1\rangle_{i})$$

$$|\theta_{i}\rangle = \sin\left(\frac{\theta_{i}}{2}\right)|\bar{n}\rangle_{i} - \cos\left(\frac{\theta_{i}}{2}\right)\frac{1}{\sqrt{2}}(|\bar{n}+1\rangle_{i} + |\bar{n}-1\rangle_{i})$$

$$|\phi_{i}\rangle = \frac{1}{\sqrt{2}}(|\bar{n}+1\rangle_{i} - |\bar{n}-1\rangle_{i})$$

• expand H to quadratic order in excitations: $H=E_0+H_\theta+H_\phi$

$$H_{\theta} = \sum_{i} \left[\frac{U}{2} + 2J \sum_{j'} \sin(\theta_{i}) \sin(\theta_{j}) \right] \epsilon_{i} b_{\theta i}^{\dagger} b_{\theta i} - J \sum_{\langle ij \rangle} \cos(\theta_{i}) \cos(\theta_{j}) \epsilon_{i} \epsilon_{j} (b_{\theta i}^{\dagger} + b_{\theta i}) (b_{\theta j}^{\dagger} + b_{\theta j})$$

 H_{ϕ} has similar structure but different coefficients

 H_{ϕ} and H_{θ} can be solved by **Bogoliubov transformation**

Excitations in clean system

- \bullet mean-field quantum phase transition at U=16J
- all excitations are spatially extended (plane waves)

Mott insulator

• all excitations are gapped

Superfluid

- Goldstone mode is gapless
- amplitude (Higgs) modes is gapped, gap vanishes at QCP

Excitations in diluted system

- Goldstone mode massless in superfluid, as required by Goldstone's theorem
- lowest Goldstone excitation undergoes delocalization transition upon entering superfluid
- Goldstone mode localized at higher energies
- Higgs mode strongly localized in both phases for all energies
- inverse participation number

$$P^{-1}(0) = \sum_{j} (|u_{\alpha j0}|^2 - |v_{\alpha j0}|^2)^2$$

• generalized fractal dimension

$$\tau_2(0) = \ln P(0) / \ln L$$

Longitudinal and transverse susceptibilities (q = 0)

Preview: Collective modes in (3+1) dimensions

- inhomogeneous mean-field theory for for 3d Bose-Hubbard model
- collective modes develop mobility edges

Goldstone (top) and amplitude (bottom) mode density of states and mobility edges for dilutions p=1/5 and 1/3

Conclusions

- disordered interacting bosons undergo quantum phase transition from superfluid to insulating Mott glass
- **conventional** critical behavior with universal critical exponents, Griffiths effects exponentially weak [see classification in T.V., J. Phys. A **39**, R143 (2006)]
- collective modes in superfluid phase show striking localization behavior
- ullet Goldstone mode is delocalized at $\omega=0$ but localizes with increasing energy
- amplitude (Higgs) mode is strongly localized for all energies
- ullet broad incoherent scalar response at q=0, violates naive scaling

Exotic collective mode dynamics even if critical behavior is conventional

Thermodynamics: Phys. Rev. B **94**, 134501 (2016), Phys. Rev. B **98**, 054514 (2018)

Collective modes: Phys. Rev. Lett. 125, 027002 (2020), Phys. Rev. B 104, 014511 (2021), Ann. Phys. 435 168526 (2021)

Disordered interacting bosons

Bosonic quasiparticles in doped quantum magnets:

Yu et al., Nature 489, 379 (2012)

- bromine-doped dichloro-tetrakis-thiourea-nickel (DTN)
- ullet coupled antiferromagnetic chains of $S=1\ \mathrm{Ni^{2+}}$ ions
- ullet S=1 spin states can be mapped onto bosonic states with $n=m_s+1$

Stability of clean quantum critical point against dilution

Harris criterion:

A clean critical point is (perturbatively) stable against weak disorder if its correlation length exponent ν fulfills the inequality $d\nu > 2$.

Superfluid-Mott insulator transition:

- ullet clean superfluid-Mott insulator quantum critical point is in (d+1)-dimensional XY universality class
- ullet correlation length critical exponent u pprox 0.6717 for (2+1) dimensions and u = 0.5 for (3+1) dimensions
- clean ν violates Harris criterion in both dimensions
- ⇒ clean critical behavior unstable against disorder (dilution)

Critical behavior of superfluid-Mott glass transition must be in new universality class

Finite-size scaling

Binder cumulant:

$$g_{\rm av} = \left[1 - \frac{\langle |\mathbf{m}|^4 \rangle}{3\langle |\mathbf{m}|^2 \rangle^2}\right]_{\rm dis}$$

Isotropic systems:

- scaling form: $g_{\rm av}(r,L) = X(rL^{1/\nu})$ $[r = (T-T_c)/T_c]$
- $g_{\rm av}$ vs. T curves for different L cross at T_c with value $g_{\rm av}(0,L)=X(0)$

Anisotropic systems:

- ullet L and $L_ au$ are not equivalent, $L_ au$ scales like $L_ au \sim L^z$ (or even as $\ln L_ au \sim L^\psi$)
- conventional scaling: $g_{\rm av}(r,L,L_{\tau})=X(rL^{1/\nu},L_{\tau}/L^z)$ activated scaling: $g_{\rm av}(r,L,L_{\tau})=X(rL^{1/\nu},\ln(L_{\tau})/L^{\psi})$
- ullet How to choose correct sample shapes if dynamical exponent z (or tunneling exponent ψ) is not known?

Anisotropic finite-size scaling

- $g_{\rm av}$ vs L_{τ} has maximum at "optimal" shape
- ullet at criticality, $L_{ au}^{
 m max} \sim L^z$ (for activated scaling: $\ln(L_{ au}^{
 m max}) \sim L^\psi$)
- once optimal shapes are found, FSS works as usual optimal $g_{\rm av}$ vs. T curves cross at T_c : $g_{\rm av}(0,L,L_{\tau}^{\rm max})=X(0,const)$

Diluted lattice: Goldstone mode

 Goldstone mode becomes massless in superfluid phase, as required by Goldstone's theorem

- ullet wave function of lowest excitation for U=8 to 15
- localized in insulator, delocalizes in superfluid phase

Goldstone mode: localization properties

• inverse participation ratio:

$$P^{-1} = N \sum_{i} |\psi_i|^4$$

 $P \rightarrow 1$ for delocalized states

 $P \rightarrow 0$ for localized states

- \bullet wave function at U=8 as function of excitation energy
- delocalized at $\omega = 0$, localized for higher energies

Amplitude (Higgs) mode

 \bullet amplitude mode strongly localized for all U and all excitation energies

ullet wave function of lowest excitation for U=8 to 15