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Spontaneous symmetry breaking

Does a symmetric Hamiltonian imply a symmetric equilibrium state?

• world of this pencil is completely isotropic, all directions are equal

• symmetry is lost when pencil falls over, now only one direction holds

• state of lowest energy has lower symmetry than system

Rotational symmetry has been broken spontaneously!



Broken symmetries and collective modes

• systems with broken continuous symmetry:
− planar magnet breaks O(2) rotation symmetry
− superfluid wave function breaks U(1) symmetry

• Amplitude mode: corresponds to fluctuations of order parameter
amplitude

• Goldstone (phase) mode: corresponds to fluctuations of order
parameter phase

• Amplitude mode can be considered condensed matter analogue
of Higgs boson

Goldstone theorem:
When a continuous symmetry is spontaneously broken, massless
Goldstone modes appear. ”Mexican hat” potential for order parameter in

symmetry-broken phase, F = tm2 + um4



What is the fate of the Goldstone and Higgs modes near a disordered
quantum phase transition?
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Disordered interacting bosons

Ultracold atoms in optical potentials:

• disorder: speckle laser field

• interactions: tuned by Feshbach
resonance and/or density

F. Jendrzejewski et al., Nature Physics 8, 398 (2012)
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Sherman et al., Phys. Rev. Lett. 108, 177006 (2012)

Disordered superconducting films:

• energy gap in insulating as well as superconducting phase

• preformed Cooper pairs ⇒ superconducting transition is
bosonic



Bose-Hubbard model

Bose-Hubbard (quantum rotor) Hamiltonian in two (and three) space dimensions:

H =
U

2

∑
i

(n̂i − n̄i)
2 −

∑
⟨i,j⟩

Jij(a
†
iaj + h.c.)

• superfluid ground state if Josephson couplings Jij dominate

• insulating ground state if charging energy U dominates

• chemical potential µi = Un̄i

Particle-hole symmetry:

• large integer filling n̄i = k with integer k ≫ 1
⇒ Hamiltonian invariant under (n̂i − n̄i) → −(n̂i − n̄i)



Phase diagrams
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Monte Carlo simulations

• map Hamiltonian onto classical (d + 1)-dimensional XY model for
particle-hole symmetric case

Hcl = −Jτ
∑
i,t

ϵiSi,t · Si,t+1−Js
∑
⟨i,j⟩,t

ϵiϵjSi,t · Sj,t

• disorder: site dilution (fraction p of lattice sites randomly removed)

• combine Wolff cluster algorithm and conventional Metropolis
updates

• system sizes up to L = 150, Lτ = 1792 in (2+1)d and L = 80,
Lτ = 320 in (3+1)d

• several dilutions from p = 0 to lattice percolation threshold pc

• averages over 10 000 to 50 000 disorder configurations

• ansiotropic finite-size scaling analysis

columnar disorder in classical XY

model, correlated in imaginary time



Thermodynamic critical behavior

(2+1)D exponents

exponent clean disordered
z 1 1.52
ν 0.6717 1.16
β/ν 0.518 0.48
γ/ν 1.96 2.52

PRB 94, 134501 (2016)

• clean system violates Harris criterion dν > 2

• disordered system in new universality class

• conventional power-law critical behavior

• universal critical exponents for dilutions 0 < p < pc

• disordered ν exponents fulfill dν > 2

• Griffiths singularities exponentially weak
(see J. Phys. A 39, R143 (2006), PRL 112, 075702 (2014))

(3+1)D exponents

exponent clean disordered
z 1 1.67
ν 0.5 0.90
β/ν 1 1.09
γ/ν 2 2.50

PRB 98, 054514 (2018)
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Amplitude mode: scalar susceptibility

• parameterize order parameter fluctuations into amplitude and
direction

ϕ⃗ = ϕ0(1 + ρ)n̂

• Amplitude mode is associated with scalar susceptibility

χρρ(x⃗, t) = iΘ(t) ⟨[ρ(x⃗, t), ρ(0, 0)]⟩

• Monte-Carlo simulations compute imaginary time correlation function

χρρ(x⃗, τ) = ⟨ρ(x⃗, τ)ρ(0, 0)⟩

• Wick rotation required: analytical continuation from imaginary to real times/frequencies

⇒ maximum entropy method to compute spectral function A(q⃗, ω) = χ′′
ρρ(q⃗, ω)/π



Analytic continuation - maximum entropy method

• Matsubara susceptibility vs. spectral function

χρρ(q⃗, iωm) =

∫ ∞

0

dωA(q⃗, ω)
2ω

ω2
m + ω2

.

Maximum entropy method:

• inversion is ill-posed problem, highly sensitive to noise

• fit A(q⃗, ω) to χρρ(q⃗, iωm) MC data by minimizing

Q = 1
2σ

2 − αS

• parameter α balances between fit error σ2 and entropy S of
A(q⃗, ω), i.e., between fitting information and noise

• best α value chosen by L-curve method [see Bergeron et al., PRE

94, 023303 (2016)]
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Amplitude mode in clean undiluted system

Scaling form (in 2d): χρρ(0, ω) = |r|3ν−2X(ω|r|−ν) [Podolsky + Sachdev, PRB 86, 054508 (2012)]
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• sharp Higgs peak in spectral function
• Higgs energy (mass) ωH scales as expected with distance from criticality r



Amplitude mode in disordered system

• spectral function shows broad peak near ω = 1

• peak is noncritical: does not move as quantum critical point is approached

• amplitude fluctuations not soft at criticality

• violates expected scaling form χρρ(0, ω) = |r|(d+z)ν−2X(ω|r|−zν) Note: (d+ z)ν − 2 > 0



What is the reason for the absence of a sharp amplitude mode at the
superfluid-Mott glass transition?



Quantum mean-field theory

H =
U

2

∑
i

ϵi(n̂i − n̄i)
2 − J

∑
⟨i,j⟩

ϵiϵj(a
†
iaj + h.c.)

• truncate Hilbert space: keep only states |n̄− 1⟩, |n̄⟩, and |n̄+ 1⟩ on each site

Variational wave function:

|ΨMF ⟩ =
∏
i

|gi⟩ =
∏
i

[
cos

(
θi
2

)
|n̄⟩i + sin

(
θi
2

)
1√
2

(
eiϕi|n̄+ 1⟩i + e−iϕi|n̄− 1⟩i

)]

• locally interpolates between Mott insulator, θ = 0, and superfluid limit, θ = π/2

Mean-field energy:

E0 = ⟨ΨMF |H|ΨMF ⟩ =
U

2

∑
i

ϵi sin
2

(
θi
2

)
− J

∑
⟨ij⟩

ϵiϵj sin(θi) sin(θj) cos(ϕi − ϕj)

• solved by minimizing E0 w.r.t. θi ⇒ coupled nonlinear equations



Mean-field theory: local order parameter mi = ⟨ai⟩ = sin(θi)e
iϕi
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Note: Mean-field theory fails close to critical point, creates smeared phase transition:



Mean-field theory: excitations

• define local excitations (orthogonal to |gi⟩, OP phase fixed at 0)

|gi⟩ = cos

(
θi
2

)
|n̄⟩i + sin

(
θi
2

)
1√
2
(|n̄+ 1⟩i + |n̄− 1⟩i)

|θi⟩ = sin

(
θi
2

)
|n̄⟩i − cos

(
θi
2

)
1√
2
(|n̄+ 1⟩i + |n̄− 1⟩i)

|ϕi⟩ =
1√
2
(|n̄+ 1⟩i − |n̄− 1⟩i)

• expand H to quadratic order in excitations: H = E0 +Hθ +Hϕ

Hθ =
∑
i

U
2
+ 2J

∑
j′

sin(θi) sin(θj)

 ϵib†θibθi − J
∑
⟨ij⟩

cos(θi) cos(θj)ϵiϵj(b
†
θi + bθi)(b

†
θj + bθj)

Hϕ has similar structure but different coefficients

Hϕ and Hθ can be solved by Bogoliubov transformation



Excitations in clean system

• mean-field quantum phase transition
at U = 16J

• all excitations are spatially extended
(plane waves)

Mott insulator

• all excitations are gapped

Superfluid

• Goldstone mode is gapless

• amplitude (Higgs) modes is gapped,
gap vanishes at QCP
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Excitations in diluted system

• Goldstone mode massless in superfluid, as
required by Goldstone’s theorem

• lowest Goldstone excitation undergoes
delocalization transition upon entering
superfluid

• Goldstone mode localized at higher
energies

• Higgs mode strongly localized in both
phases for all energies

• inverse participation number

P−1(0) =
∑
j

(|uαj0|2 − |vαj0|2)2

• generalized fractal dimension

τ2(0) = lnP (0)/ lnL
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Longitudinal and transverse susceptibilities (q = 0)
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Preview: Collective modes in (3 + 1) dimensions

0

5

10

15

ν
G

0 10 20
0

5

10

15

U

ν
H

10-14 10-12 10-10 10-8 10-6 10-4 10-2
DOS

0 10 20
U

• inhomogeneous mean-field theory for
for 3d Bose-Hubbard model

• collective modes develop mobility
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Conclusions

• disordered interacting bosons undergo quantum phase transition from superfluid to insulating Mott glass

• conventional critical behavior with universal critical exponents, Griffiths effects exponentially weak
[see classification in T.V., J. Phys. A 39, R143 (2006)]

• collective modes in superfluid phase show striking localization behavior

• Goldstone mode is delocalized at ω = 0 but localizes with increasing energy

• amplitude (Higgs) mode is strongly localized for all energies

• broad incoherent scalar response at q = 0, violates naive scaling

Exotic collective mode dynamics even if critical behavior is conventional

Thermodynamics: Phys. Rev. B 94, 134501 (2016), Phys. Rev. B 98, 054514 (2018)

Collective modes: Phys. Rev. Lett. 125, 027002 (2020), Phys. Rev. B 104, 014511 (2021), Ann. Phys. 435 168526 (2021)



Disordered interacting bosons

Bosonic quasiparticles in doped quantum magnets:

Yu et al., Nature 489, 379 (2012)

• bromine-doped dichloro-tetrakis-thiourea-nickel (DTN)

• coupled antiferromagnetic chains of S = 1 Ni2+ ions

• S = 1 spin states can be mapped onto bosonic states with n = ms + 1



Stability of clean quantum critical point against dilution

Harris criterion:

A clean critical point is (perturbatively) stable against weak disorder if its correlation length exponent ν fulfills
the inequality dν > 2.

Superfluid-Mott insulator transition:

• clean superfluid-Mott insulator quantum critical point is in (d+ 1)-dimensional XY universality class

• correlation length critical exponent ν ≈ 0.6717 for (2+1) dimensions and ν = 0.5 for (3+1) dimensions

• clean ν violates Harris criterion in both dimensions

⇒ clean critical behavior unstable against disorder (dilution)

Critical behavior of superfluid-Mott glass transition must be in new universality class



Finite-size scaling

Binder cumulant:

gav =

[
1− ⟨|m|4⟩

3⟨|m|2⟩2

]
dis

Isotropic systems:

• scaling form: gav(r, L) = X(rL1/ν)
[r = (T − Tc)/Tc]

• gav vs. T curves for different L cross at Tc with value
gav(0, L) = X(0)
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Anisotropic systems:

• L and Lτ are not equivalent, Lτ scales like Lτ ∼ Lz (or even as lnLτ ∼ Lψ)

• conventional scaling: gav(r, L, Lτ) = X(rL1/ν, Lτ/L
z)

activated scaling: gav(r, L, Lτ) = X(rL1/ν, ln(Lτ)/L
ψ)

• How to choose correct sample shapes if dynamical exponent z (or tunneling exponent ψ) is not known?



Anisotropic finite-size scaling
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• at criticality, Lmax
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Diluted lattice: Goldstone mode

• Goldstone mode becomes massless in superfluid phase,
as required by Goldstone’s theorem

• wave function of lowest excitation
for U = 8 to 15

• localized in insulator, delocalizes in
superfluid phase



Goldstone mode: localization properties

• inverse participation ratio:

P−1 = N
∑
i |ψi|4

P → 1 for delocalized states
P → 0 for localized states
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Amplitude (Higgs) mode

• amplitude mode strongly localized for all U and all
excitation energies
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