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Random lattices



Outline

• Random lattices and hyperuniform disorder

• Superfluid-insulator transition on a random Voronoi

lattice

• Amplitude (Higgs) mode puzzle
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Random Voronoi-Delaunay lattice

• construct cell structure from set of random lattice sites

Voronoi cell of site:

• contains all points in the plane (in space) closer to given site
than to any other

• sites whose Voronoi cells share an edge (a face) considered
neighbors

Delaunay triangulation (tetrahedrization):

• graph consisting of all bonds connecting pairs of neighbors

• dual lattice to Voronoi lattice



Properties of random Voronoi lattices

• lattice sites at independent random positions

• local coordination number qi fluctuates:
2d: ⟨q⟩ = 6, σq ≈ 1.33
3d: ⟨q⟩ = 2 + (48/35)π2 ≈ 15.54, σq ≈ 3.36

4 6 8 10 12 14 16 18
q

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
sizable disorder



Coordination number fluctuations

Voronoi diluted

• divide large system into blocks
of size Lb

• Calculate block-average
coordination number

Qµ =
1

Nb,µ

∑
i∈µ

qi

• fluctuations in Voronoi lattice
suppressed



Coordination number fluctuations – II
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• standard deviation
σ2
Q(Lb) =

[
(Qµ − q̄)2

]
µ

• Voronoi lattice: σQ ∼ L
−3/2
b

• diluted lattice:
σQ ∼ L−1

b ∼ N
−1/2
b

• also study link-distance clusters

• σQ ∼ L
−3/2
b as for the real-space

clusters

lattice is hyperuniform

Barghathi + Vojta, PRL 113, 120602 (2014)



Topological constraint

• What is the reason for the suppressed disorder fluctuations in the Voronoi lattice??

Euler equation for Delaunay triangulation:
(graph of N lattice sites, E edges, F facets, i.e., triangles)

N − E + F = χ

χ: Euler characteristic, topological invariant of the underlying surface
torus topology (periodic boundary conditions): χ = 0

• each triangle has three edges, and each edge is shared by two triangles, 3F = 2E
⇒ average coordination number precisely q̄ = 6 for any disorder configuration

• also follows from fixed angle sum of 180◦ in a triangle

Topological constraint introduces anticorrelations between disorder fluctuations

• fluctuations stem from surface: σQ(Lb) ∼ L
(d−1)/2
b /Ld

b = L
−(d+1)/2
b = L

−3/2
b



Correlation function
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C(r) =
1

N

∑
ij

(qi − q̄)(qj − q̄)δ(r− rij) , σ2
Q,bulk(r) = D(r) =

2π

Nr

∫ r

0

dr′ r′C(r′)

⇒ bulk contribution to fluctuations negligible beyond 5 or 6 n.n. distances



How general is the suppression of fluctuations?

Two dimensions:

• topological constraint: Euler eq. N − E + F = χ and triangle relation 3F = 2E

• holds for all random triangulations (with short-range bonds)

• also holds for all tilings with arbitrary quadrilaterals (using 4F = 2E)
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Examples:

• random Voronoi lattices

• lattices with random bond-exchange defects

• quasiperiodic Penrose and Ammann-Beenker tilings

broad class of random lattices with fixed total
coordination, σQ ∼ L

−3/2
b



• Random lattices and hyperuniform disorder

• Superfluid-insulator transition on a random Voronoi lattice

• Amplitude (Higgs) mode puzzle



Interacting bosons on a random Voronoi lattice

Bose-Hubbard (quantum rotor) Hamiltonian:

H =
U

2

∑
i

(n̂i − n̄i)
2 − J

∑
⟨i,j⟩

(a†iaj + h.c.)

• superfluid ground state if Josephson coupling J dominates

• insulating ground state if charging energy U dominates

⇒ Superfluid-insulator quantum phase transition as function of U/J

Goals:

• Understand effects of hyperuniform disorder and quantum phase transition

• Solve Higgs mode puzzle: What causes the spatial localization of Higgs (amplitude) mode in disordered
superfluid



Monte Carlo simulations

• large integer filling n̄i (particle-hole symmetric case):
map Hamiltonian onto classical (2 + 1)D XY model

Hcl = −Jτ
∑
i,t

Si,t · Si,t+1−Js
∑
⟨i,j⟩,t

Si,t · Sj,t

• combine Wolff cluster algorithm and conventional
Metropolis updates

• large system sizes up to L = 200, Lτ = 400

• averages over 1 000 to 5 000 disorder configurations

• ansiotropic finite-size scaling analysis
Layered VD lattice, correlated in imaginary time



Modified Harris criterion

Stability of clean critical point against randomness:
variation of local Tc(x) between correlation volumes must be smaller than distance from global Tc

Uncorrelated disorder

• variation of average Tc in volume ξd: ∆⟨Tc(x) :⟩ ∼ ξ−d/2

• distance from global critical point: |T − Tc| ∼ ξ−1/ν

• ∆⟨Tc(x)⟩ < |T − Tc| ⇒ stable if dν > 2

Anticorrelated (hyperuniform) disorder

• variation of average Tc in volume ξd: ∆⟨Tc(x) :⟩ ∼ ξ−(d+1)/2

• ∆⟨Tc(x)⟩ < |T − Tc| ⇒ stable if (d+ 1)ν > 2

ξ

+TC(1),

+TC(4),

+TC(2),

+TC(3),

• clean superconductor-insulator transition features ν = 0.6717

⇒ uncorrelated disorder is relevant perturbation but anticorrelated (hyperuniform) disorder is irrelevant



Anisotropic finite-size scaling

• disorder breaks symmetry between space and (imaginary) time directions

• correct sample shapes (aspect ratios between L and Lτ) not known apriori, need to be found during
simulation

⇒ anisotropic finite-size scaling of the Binder cumulant Um = [1− ⟨m4⟩/(3⟨m2⟩2)]dis
• once the “optimal shapes” have been found, finite-size scaling analysis proceeds normally
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Thermodynamic critical behavior

• Superfluid-insulator transition on random VD lattice
features clean critical behavior

• agrees with modified Harris criterion

• in contrast, generic disorder leads to new universality
class, in agreement with regular Harris criterion

Exponent Clean[1] Generic disorder[2] VD lattice[3]

ν 0.6717 1.16(5) 0.672(8)

β/ν 0.519 0.48(2) 0.520(4)

γ/ν 1.962 2.52(4) 1.950(10)

z 1 1.52(3) 1.008(9)

[1] Phys. Rev. B 74, 144506 (2006)

[2] Phys. Rev. B 94, 134501 (2016)

[3] Phys. Rev. B 110, 024206 (2024)
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• Random lattices and hyperuniform disorder

• Superfluid-insulator transition on a random Voronoi lattice

• Amplitude (Higgs) mode puzzle



Broken symmetries and collective modes

• systems with broken continuous symmetry:
− planar magnet breaks O(2) rotation symmetry
− superfluid wave function breaks U(1) symmetry

• Amplitude mode: corresponds to fluctuations of order parameter
amplitude

• Goldstone (phase) mode: corresponds to fluctuations of order
parameter phase

• Amplitude mode can be considered condensed matter analogue
of Higgs boson

Goldstone theorem:
When a continuous symmetry is spontaneously broken, massless
Goldstone modes appear. ”Mexican hat” potential for order parameter in

symmetry-broken phase, F = tm2 + um4



Amplitude mode: scalar susceptibility

• parameterize order parameter fluctuations into amplitude and
direction

ϕ⃗ = ϕ0(1 + ρ)n̂

• Amplitude mode is associated with scalar susceptibility

χρρ(x⃗, t) = iΘ(t) ⟨[ρ(x⃗, t), ρ(0, 0)]⟩

• Monte-Carlo simulations compute imaginary time correlation function

χρρ(x⃗, τ) = ⟨ρ(x⃗, τ)ρ(0, 0)⟩

• Wick rotation required: analytical continuation from imaginary to real times/frequencies

⇒ maximum entropy method to compute spectral function A(q⃗, ω) = χ′′
ρρ(q⃗, ω)/π



Amplitude mode: clean vs. disordered systems
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• sharp Higgs peak in spectral function

• long-lived particle-like excitation

• fulfills scaling form
χρρ(0, ω) = |r|(d+z)ν−2X(ω|r|−zν)

• disorder suppresses sharp Higgs peak

• χρρ violates naive scaling

• flat energy-momentum dispersion

⇒ amplitude mode spatially localized

What causes broad spectral response? Anderson localization or mode-mode interactions



Amplitude mode on a random Voronoi-Delaunay lattice
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• sharp Higgs peaks as in the clean case

• fulfills expected scaling form χρρ(0, ω) = |r|(d+z)ν−2X(ω|r|−zν)

⇒ evidence against Anderson localization (non-interacting particles on random VD lattice are fully localized)

⇒ character of amplitude mode governed by critical behavior of the transition (scale dimension of χρρ)



Conclusions

• broad class of random lattices are hyperuniform with strong disorder anticorrelations, including random
Voronoi-Delaunay lattice

• critical points on such lattices are governed by modified Harris criterion (d+ 1)ν > 2

• superfluid-insulator transition on random Voronoi-Delaunay lattice shows clean critical behavior

• amplitude (Higgs) mode remains sharp, delocalized, particle-like excitation

• amplitude localization in the presence of conventional disorder not driven by Anderson localization but by
mode-mode interaction effects, governed by the critical fixed point

Superfluid transition on VD lattice: Phys. Rev. B 110, 024206 (2024)

Amplitude mode localization: Phys. Rev. Lett. 125, 027002 (2020), Phys. Rev. B 104, 014511 (2021)

Random lattices and modified Harris criterion: Phys. Rev. Lett. 113, 120602 (2014)



Algorithms

• generating Voronoi lattice or Delaunay triangulation is prototypical problem in computational geometry

• many different algorithms exist

• efficient algorithm inspired by Tanemura et al., uses empty circumcircle property
up to 50002 sites in 2d and 4003 sites in 3d

• computer time scales roughly linearly with number of sites

• 106 sites in 2d: about 30 seconds on PC
106 sites in 3d: about 3 min



Analytic continuation - maximum entropy method

• Matsubara susceptibility vs. spectral function

χρρ(q⃗, iωm) =

∫ ∞

0

dωA(q⃗, ω)
2ω

ω2
m + ω2

.

Maximum entropy method:

• inversion is ill-posed problem, highly sensitive to noise

• fit A(q⃗, ω) to χρρ(q⃗, iωm) MC data by minimizing

Q = 1
2σ

2 − αS

• parameter α balances between fit error σ2 and entropy S of
A(q⃗, ω), i.e., between fitting information and noise

• best α value chosen by L-curve method [see Bergeron et al., PRE

94, 023303 (2016)]
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