Critical Behavior and Collective Modes at the Superfluid Transition in Amorphous Systems

Thomas Vojta

Department of Physics, Missouri University of Science and Technology

Random lattices

Amorphous solids and liquids

Additive manufacturing: bone scaffold

Biological cell structures

Thai breadfruit

Human keratinocytes

Outline

- Random lattices and hyperuniform disorder
- Superfluid-insulator transition on a random Voronoi lattice
- Amplitude (Higgs) mode puzzle

DMR-1828489 OAC-1919789 PHY-2309135

Vishnu PK

Martin Puschmann

Rajesh Narayanan

Random Voronoi-Delaunay lattice

• construct cell structure from set of random lattice sites

Voronoi cell of site:

- contains all points in the plane (in space) closer to given site than to any other
- sites whose Voronoi cells share an edge (a face) considered neighbors

Delaunay triangulation (tetrahedrization):

- graph consisting of all bonds connecting pairs of neighbors
- dual lattice to Voronoi lattice

Properties of random Voronoi lattices

- lattice sites at independent random positions
- local coordination number q_i fluctuates:

2d: $\langle q \rangle = 6$, $\sigma_q \approx 1.33$

2d: $\langle q \rangle = 6$, $\sigma_q \approx 1.33$ 3d: $\langle q \rangle = 2 + (48/35)\pi^2 \approx 15.54$, $\sigma_q \approx 3.36$

Coordination number fluctuations

- ullet divide large system into blocks of size L_b
- Calculate block-average coordination number

$$Q_{\mu} = \frac{1}{N_{b,\mu}} \sum_{i \in \mu} q_i$$

 fluctuations in Voronoi lattice suppressed

Coordination number fluctuations - II

- standard deviation $\sigma_Q^2(L_b) = \left[(Q_\mu \bar{q})^2 \right]_\mu$
- Voronoi lattice: $\sigma_Q \sim L_b^{-3/2}$
- diluted lattice: $\sigma_Q \sim L_b^{-1} \sim N_b^{-1/2}$
- also study link-distance clusters
- $\sigma_Q \sim L_b^{-3/2}$ as for the real-space clusters

lattice is hyperuniform

Barghathi + Vojta, PRL 113, 120602 (2014)

Topological constraint

• What is the reason for the suppressed disorder fluctuations in the Voronoi lattice??

Euler equation for Delaunay triangulation:

(graph of N lattice sites, E edges, F facets, i.e., triangles)

$$N - E + F = \chi$$

- χ : Euler characteristic, topological invariant of the underlying surface torus topology (periodic boundary conditions): $\chi = 0$
- ullet each triangle has three edges, and each edge is shared by two triangles, 3F=2E
- \Rightarrow average coordination number precisely $\bar{q}=6$ for any disorder configuration
- also follows from fixed angle sum of 180° in a triangle

Topological constraint introduces anticorrelations between disorder fluctuations

• fluctuations stem from surface: $\sigma_Q(L_b) \sim L_b^{(d-1)/2}/L_b^d = L_b^{-(d+1)/2} = L_b^{-3/2}$

Correlation function

$$C(\mathbf{r}) = \frac{1}{N} \sum_{ij} (q_i - \bar{q})(q_j - \bar{q}) \delta(\mathbf{r} - \mathbf{r}_{ij}) \quad , \qquad \sigma_{Q,\text{bulk}}^2(r) = D(r) = \frac{2\pi}{N_r} \int_0^r dr' \, r' \, C(r')$$

 \Rightarrow bulk contribution to fluctuations **negligible** beyond 5 or 6 n.n. distances

How general is the suppression of fluctuations?

Two dimensions:

- ullet topological constraint: Euler eq. $N-E+F=\chi$ and triangle relation 3F=2E
- holds for all random triangulations (with short-range bonds)
- ullet also holds for all tilings with arbitrary quadrilaterals (using 4F=2E)

Examples:

- random Voronoi lattices
- lattices with random bond-exchange defects
- quasiperiodic Penrose and Ammann-Beenker tilings

broad class of random lattices with fixed total coordination, $\sigma_Q \sim L_b^{-3/2}$

- Random lattices and hyperuniform disorder
- Superfluid-insulator transition on a random Voronoi lattice
- Amplitude (Higgs) mode puzzle

Interacting bosons on a random Voronoi lattice

Bose-Hubbard (quantum rotor) Hamiltonian:

$$H = \frac{U}{2} \sum_{i} (\hat{n}_i - \bar{n}_i)^2 - J \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + h.c.)$$

- \bullet superfluid ground state if **Josephson coupling** J dominates
- ullet insulating ground state if **charging energy** U dominates
- \Rightarrow Superfluid-insulator quantum phase transition as function of U/J

Goals:

- Understand effects of hyperuniform disorder and quantum phase transition
- Solve Higgs mode puzzle: What causes the spatial localization of Higgs (amplitude) mode in disordered superfluid

Monte Carlo simulations

• large integer filling \bar{n}_i (particle-hole symmetric case): map Hamiltonian onto classical (2+1)D XY model

$$H_{\mathrm{cl}} = -J_{ au} \sum_{i,t} \mathbf{S}_{i,t} \cdot \mathbf{S}_{i,t+1} - J_{s} \sum_{\langle i,j \rangle,t} \mathbf{S}_{i,t} \cdot \mathbf{S}_{j,t}$$

- combine Wolff cluster algorithm and conventional Metropolis updates
- large system sizes up to L=200, $L_{\tau}=400$
- averages over 1000 to 5000 disorder configurations
- ansiotropic finite-size scaling analysis

Layered VD lattice, correlated in imaginary time

Modified Harris criterion

Stability of clean critical point against randomness:

variation of local $T_c(x)$ between correlation volumes must be smaller than distance from global T_c

Uncorrelated disorder

- variation of average T_c in volume ξ^d : $\Delta \langle T_c(x) : \rangle \sim \xi^{-d/2}$
- ullet distance from global critical point: $|T-T_c|\sim \xi^{-1/
 u}$
- $\Delta \langle T_c(x) \rangle < |T T_c| \Rightarrow \text{ stable if } d\nu > 2$

Anticorrelated (hyperuniform) disorder

- variation of average T_c in volume ξ^d : $\Delta \langle T_c(x): \rangle \sim \xi^{-(d+1)/2}$
- $\Delta \langle T_c(x) \rangle < |T T_c| \implies \text{stable if } (d+1)\nu > 2$

- clean superconductor-insulator transition features $\nu = 0.6717$
- ⇒ uncorrelated disorder is relevant perturbation but anticorrelated (hyperuniform) disorder is irrelevant

Anisotropic finite-size scaling

- disorder breaks symmetry between space and (imaginary) time directions
- correct sample shapes (aspect ratios between L and L_{τ}) not known apriori, need to be found during simulation
- \Rightarrow anisotropic finite-size scaling of the Binder cumulant $U_m = [1 \langle m^4 \rangle/(3\langle m^2 \rangle^2)]_{\rm dis}$
 - once the "optimal shapes" have been found, finite-size scaling analysis proceeds normally

Thermodynamic critical behavior

- Superfluid-insulator transition on random VD lattice features clean critical behavior
- agrees with modified Harris criterion
- in contrast, generic disorder leads to **new universality class**, in agreement with regular Harris criterion

Exponent	Clean[1]	Generic disorder[2]	VD lattice[3]
$\overline{\nu}$	0.6717	1.16(5)	0.672(8)
eta/ u	0.519	0.48(2)	0.520(4)
γ/ u	1.962	2.52(4)	1.950(10)
z	1	1.52(3)	1.008(9)

^[2] Phys. Rev. B 94, 134501 (2016)

^[3] Phys. Rev. B 110, 024206 (2024)

- Random lattices and hyperuniform disorder
- Superfluid-insulator transition on a random Voronoi lattice
- Amplitude (Higgs) mode puzzle

Broken symmetries and collective modes

- systems with **broken continuous symmetry**:
 - planar magnet breaks O(2) rotation symmetry
 - superfluid wave function breaks U(1) symmetry
- Amplitude mode: corresponds to fluctuations of order parameter amplitude
- Goldstone (phase) mode: corresponds to fluctuations of order parameter phase
- Amplitude mode can be considered condensed matter analogue of Higgs boson

Goldstone theorem:

When a continuous symmetry is spontaneously broken, massless Goldstone modes appear.

"Mexican hat" potential for order parameter in symmetry-broken phase, $F = t \mathbf{m}^2 + u \mathbf{m}^4$

Amplitude mode: scalar susceptibility

parameterize order parameter fluctuations into amplitude and direction

$$\vec{\phi} = \phi_0 (1 + \rho) \hat{\mathbf{n}}$$

Amplitude mode is associated with scalar susceptibility

$$\chi_{\rho\rho}(\vec{x},t) = i\Theta(t) \langle [\rho(\vec{x},t), \rho(0,0)] \rangle$$

Monte-Carlo simulations compute imaginary time correlation function

$$\chi_{\rho\rho}(\vec{x},\tau) = \langle \rho(\vec{x},\tau)\rho(0,0)\rangle$$

- Wick rotation required: analytical continuation from imaginary to real times/frequencies
 - \Rightarrow maximum entropy method to compute spectral function $A(\vec{q},\omega)=\chi''_{\rho\rho}(\vec{q},\omega)/\pi$

Amplitude mode: clean vs. disordered systems

- sharp Higgs peak in spectral function
- long-lived particle-like excitation
- fulfills scaling form $\chi_{\rho\rho}(0,\omega) = |r|^{(d+z)\nu-2} X(\omega|r|^{-z\nu})$

- disorder suppresses sharp Higgs peak
- $\chi_{\rho\rho}$ violates naive scaling
- flat energy-momentum dispersion
- ⇒ amplitude mode spatially localized

Amplitude mode on a random Voronoi-Delaunay lattice

- sharp Higgs peaks as in the clean case
- fulfills expected scaling form $\chi_{\rho\rho}(0,\omega)=|r|^{(d+z)\nu-2}X(\omega|r|^{-z\nu})$
- \Rightarrow evidence against Anderson localization (non-interacting particles on random VD lattice are fully localized)
- \Rightarrow character of amplitude mode governed by critical behavior of the transition (scale dimension of $\chi_{\rho\rho}$)

Conclusions

- broad class of random lattices are **hyperuniform** with strong disorder **anticorrelations**, including random Voronoi-Delaunay lattice
- ullet critical points on such lattices are governed by modified Harris criterion (d+1)
 u>2
- superfluid-insulator transition on random Voronoi-Delaunay lattice shows clean critical behavior
- amplitude (Higgs) mode remains **sharp**, **delocalized**, particle-like excitation
- amplitude localization in the presence of conventional disorder not driven by Anderson localization but by mode-mode interaction effects, governed by the critical fixed point

Superfluid transition on VD lattice: Phys. Rev. B 110, 024206 (2024)

Amplitude mode localization: Phys. Rev. Lett. 125, 027002 (2020), Phys. Rev. B 104, 014511 (2021)

Random lattices and modified Harris criterion: Phys. Rev. Lett. 113, 120602 (2014)

Algorithms

- generating Voronoi lattice or Delaunay triangulation is prototypical problem in computational geometry
- many different algorithms exist
- efficient algorithm inspired by Tanemura et al., uses **empty** circumcircle property up to 5000^2 sites in 2d and 400^3 sites in 3d
- computer time scales roughly linearly with number of sites
- 10^6 sites in 2d: about 30 seconds on PC 10^6 sites in 3d: about 3 min

Analytic continuation - maximum entropy method

• Matsubara susceptibility vs. spectral function

$$\chi_{\rho\rho}(\vec{q}, i\omega_m) = \int_0^\infty d\omega A(\vec{q}, \omega) \frac{2\omega}{\omega_m^2 + \omega^2}$$

Maximum entropy method:

- inversion is ill-posed problem, highly sensitive to noise
- fit $A(\vec{q},\omega)$ to $\chi_{\rho\rho}(\vec{q},i\omega_m)$ MC data by minimizing $Q=\tfrac{1}{2}\sigma^2-\alpha S$
- parameter α balances between fit error σ^2 and entropy S of $A(\vec{q}, \omega)$, i.e., between fitting information and noise
- best α value chosen by L-curve method [see Bergeron et al., PRE 94, 023303 (2016)]

