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Randomly layered superfluids, and superconductors, and magnets

(Pekker et al. 2010)

material consists of random sequence of
layers of two materials, for example

• two different ferromagnets with different
Curie temperatures

• superconducting layers of varying
thickness, separated by thin insulating
layers

system can also be realized using ultracold
atoms

• Bose-Einstein condensate in
one-dimensional random optical lattice

⇒ two-dimensional condensate “puddles”
separated by potential barriers



Question: How is the order-disorder phase transition in these systems
affected by the two-dimensional correlations of the randomness?
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Phase transitions and (weak) disorder

Real systems always contain
impurities and other imperfections

Weak (random-Tc) disorder:

spatial variation of coupling strength but
no change in character of the ordered phase

Will the phase transition remain sharp or become smeared?

Will the transition be of first order or continuous?

Will the critical behavior change? (Harris criterion!)



Importance of rare regions

Example: classical dilute ferromagnet

• critical temperature Tc is reduced compared
to clean value Tc0

• for Tc < T < Tc0: no global order but local
order on rare regions devoid of impurities

• each rare region acts as large superspin

• each rare region makes large contribution to
thermodynamics

⇒ Griffiths singularities in the free energy

Disorder correlations:

• rare regions are “infinitely” large in correlated
directions

• Griffiths singularities are strongly enhanced

t



Classification of phase transitions in weakly disordered systems

• order-disorder transitions in random systems can be classified by dimensionality
dRR of defects/rare regions (including imaginary time for QPTs)

• applies to transitions governed by LGW order-parameter field theories
(thermal phase transitions + some quantum phase transitions)

Dimension Griffiths effects Dirty critical point Examples

dRR < d−c RR do not order conventional class. magnet with point defects

weak essential singularity dilute bilayer Heisenberg model

dRR = d−c RR marginal exotic Ising model with linear defects

power-law singularity (infinite randomness) random quantum Ising model

dRR > d−c RR order independently smeared transition Ising model with planar defects

itinerant quantum Ising magnet

J. Phys. A 39, R143 (2006), J. Low Temp. Phys. 161, 299 (2010)



Randomly layered superfluids, and superconductors, and magnets

In our case:

• rare regions are stacks consisting of strongly
coupled layers only

• rare regions are two-dimensional, dRR = 2

Heisenberg symmetry:

• rare regions are exactly at d−c ⇒ exotic critical point expected

XY symmetry:

• rare regions do not show long-range order but independently undergo
Kosterlitz-Thouless transition

⇒ Question: fate of global phase transition in this special case??
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XY model with plane defects

classical XY model on cubic lattice (use “magnetic language”)

H = −
∑
r

J∥
z (Sr · Sr+x̂ + Sr · Sr+ŷ)−

∑
r

J⊥
z Sr · Sr+ẑ.

J
∥
z : exchange interactions within the layers
J⊥
z : exchange interactions between the layers

J
∥
z and J⊥

z are random functions of vertical position z

• J⊥
z ≡ J⊥ for simplicity:

• J∥
z binary distributed:

P (J∥) = (1− c) δ(J∥ − Ju) + c δ(J∥ − Jl)



Overview over phase diagram

SD: strongly disordered phase at high temperatures, all layers in nonmagnetic phase

SO: strongly ordered phase at low temperatures, all layers in magnetic phase

G: Griffiths phase, locally magnetic layers coexist with locally nonmagnetic layers,
the phase transition temperature, if any, must be in this region

TTl Tu SDSO G

Tu, Tl: upper and lower Griffiths temperatures,
transition temperatures of clean systems having only strong or only weak
bonds, respectively



Optimal fluctuation theory

crucial role is played by rare regions, i.e., stacks
consisting of strong layers only

• probability for rare region of thickness LRR: w(LRR) ∼ (1− c)LRR = e−c̃LRR

• each rare region can undergo Kosterlitz-Thouless transition by itself

from finite-size scaling: (Tu − TKT (LRR)) ∼ L
−1/ν
RR with ν = 0.6717 (3D XY)

⇒ cut-off thickness Lc(T ) ∼ (Tu − T )−ν

if LRR > Lc(T ), RR is in KT phase; if LRR < Lc(T ), RR is in disordered phase

• rare regions in KT phase have long-range correlations: C(x) ∼ |x|−η
η ≈ 1

4Lc(T )/LRR

• rare regions in KT phase have infinite susceptibility: m ∼ Hη/(4−η)



Results: Magnetization

• combine KT physics within the rare regions with exponential size distribution

• close to Tu, rare regions are essentially decoupled

magnetization-field curve: M ∼
∫∞
Lc(T )

dLRR w(LRR)H
η(LRR)/[4−η(LRR)]

⇒ magnetization vanishes more slowly than any power with H → 0

M ∼ exp
(
−A

√
| ln(H)|(Tu − T )−ν

)

spontaneous magnetization: take weak coupling between RRs into account

⇒ infinite susceptibility of RRs leads to nonzero spontaneous M for all T < Tu

ln(M) ∼ − exp[B(Tu − T )−ν] (T → T−
u )



Results: Spin-wave stiffness

• twist the spins of two opposite boundaries by a relative angle Θ

• spin-wave stiffness ρs defined by free-energy difference f(Θ)−f(0) = 1
2ρs(Θ/L)

2

in-plane (parallel) stiffness:

• all layers have the same twisted BC: ρs,∥ ∼
∫∞
Lc(T )

dLRRw(LRR) ρs,RR(LRR)

• nonzero ρs,∥ appears already at Tu: ρs,∥ ∼ exp[−C(Tu − T )−ν] (T → T−
u )

perpendicular stiffness:

• local twists vary from layer to layer, occur mostly in disordered bulk

• ρs,⊥ is nonzero only below Ts < Tu



Anomalously elastic intermediate phase

• spontaneous magnetization and
parallel stiffness appear already at
upper Griffiths temperature Tu

• perpendicular stiffness appears only
at a lower temperature Ts

• for Tu > T > Ts system shows
anomalous elasticity,

f(Θ)− f(0) ∼ Θ2L
−(1+z)
⊥

with non-universal exponent z > 1
(z → ∞ at Tu and z → 1 at Ts)

⇒ interplay between randomness and Kosterlitz-Thouless physics in the layers leads
to hybrid between smeared and sharp phase transition

Alternative strong-disorder RG approach by Pekker et al. (2010)
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Heisenberg model with plane defects

classical Heisenberg model on cubic lattice

H = −
∑
r

J∥
z (Sr · Sr+x̂ + Sr · Sr+ŷ)−

∑
r

J⊥
z Sr · Sr+ẑ.

J
∥
z : exchange interactions within the layers
J⊥
z : exchange interactions between the layers

J
∥
z and J⊥

z are random functions of vertical position z

for simplicity: J⊥
z ≡ J⊥, binary distribution of J∥

P (J∥) = (1− c) δ(J∥ − Ju) + c δ(J∥ − Jl) ,



Large-N order parameter field theory

• N -component real order parameter field ϕx,y,z

• space is continuous in the in-plane (x, y) directions but discrete in perpendicular
(z) direction

• large-N limit of an infinite number of order parameter components

Action:

S =
∑
z,q

(
rz + λz + γ2zq

2
)
|ϕz(q)|2 −

∑
z,q

Jz ϕz(−q)ϕz+1(q)

rz, γz > 0, Jz > 0: random functions of perpendicular position z

λz: Lagrange multiplier enforcing large-N constraint ⟨ϕ2x,y,z⟩ = 1

ϵz = rz + λz: renormalized (local) distance from criticality



Strong-disorder renormalization group

• introduced by Ma, Dasgupta, Hu (1979), further developed by Fisher (1992, 1995)
• asymptotically exact if disorder distribution becomes broad under RG

Basic idea: Successively integrate out the local high-energy modes and
renormalize the remaining degrees of freedom.

in our system

S =
∑
z,q

(
ϵz + γ2zq

2
)
|ϕz(q)|2 −

∑
z,q

Jz ϕz(−q)ϕz+1(q)

the competing local energies are:

• interactions (bonds) Jz favoring the ordered phase
• local “gaps” ϵz favoring the disordered phase

⇒ in each RG step, integrate out largest among all Jz and ϵz



Recursion relations

J=J2 J3/ε3

ε5ε4ε3ε2ε1

J1

J1 J4

J3 J4J2

~

ε5ε4

ε=ε2 ε3 /J2

ε2ε1

J1

J1 J3

J4J2

~

J3

ε3

if largest energy is a gap, e.g., ϵ3 ≫ J2, J3:

• layer 3 is removed from the system

• coupling to neighbors is treated in 2nd order
perturbation theory

new renormalized bond J̃ = J2J3/ϵ3

if largest energy is a bond, e.g., J2 ≫ ϵ2, ϵ3:

• spins of layers 2 and 3 are parallel

• can be replaced by single layer with moment
µ̃ = µ2 + µ3

renormalized gap ϵ̃ = ϵ2ϵ3/J2



Renormalization-group flow equations

• RG step is iterated gradually reducing maximum energy Ω

⇒ flow equations for the probability distributions P (J) and R(ϵ)

−
∂P

∂Ω
= [P (Ω) − R(Ω)]P + R(Ω)

∫
dJ1dJ2 P (J1)P (J2) δ

(
J −

J1J2

Ω

)
−
∂R

∂Ω
= [R(Ω) − P (Ω)]R + P (Ω)

∫
dϵ1dϵ2R(ϵ1)R(ϵ2) δ

(
ϵ−

ϵ1ϵ2

Ω

)

Flow equations are identical to those of the random transverse-field Ising chain

⇒ exotic infinite-randomness critical point

⇒ activated (exponential) scaling ln(ξ∥/a) ∼ ξψ⊥ with ψ = 1/2

⇒ accompanied by power-law “quantum” Griffiths singularities

Classical transition of the 3D randomly layered Heisenberg magnet is in
the same universality class as the quantum phase transition of the 1D
transverse-field Ising model.



Schematic phase diagram

TTuTl Tc

SO SDDGOG

Phases:

SD: Strongly Disordered (conventional) paramagnetic phase

DG: Disordered Griffiths phase (rare locally ordered slabs in paramagnetic bulk)

OG: Ordered Griffiths phase (rare disordered slabs in ferromagnetic bulk)

SO: Strongly Ordered (conventional) ferromagnetic phase

Tu, Tl: upper and lower Griffiths temperatures (transition temperatures of
hypothetical systems having only strong or only weak bonds, respectively)



Results: Magnetization

• critical behavior exactly known (very rare for phase transition in 3D)

Spontaneous magnetization:

m ∼ (Tc − T )ν(1−ϕψ) with ν = 2, ψ = 1/2, ϕ = (
√
5 + 1)/2

Magnetization-field curve:

m(h)−m(0) ∼ h1/(1+z) ordered Griffiths phase

m(h) ∼ [ln(1/h)]ϕ−1/ψ at criticality

m(h) ∼ h1/z disordered Griffiths phase

z is non-universal dynamical exponent of the Griffiths phase, z diverges at Tc

Magnetic susceptibility:

• diverges not just at critical point but in finite temperature range around Tc



Results: Spin-wave stiffness

Spin-wave stiffness:

• parallel stiffness ρ∥ (twist in B.C. in x or y direction) scales like magnetization,

ρ∥ ∼ m ∼ (Tc − T )ν(1−ϕψ)

• perpendicular stiffness ρ⊥ (twist in B.C. in z direction) nonzero only below
Ts < Tc

• anomalous elasticity in part of the ordered Griffiths phase

T

m, ρs m
ρs||

ρs⊥

Tl Ts Tc Tu

SDSO

AG

DGOG
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Why (unbiased) numerical methods?

• strong-disorder methods can at best identify possible fixed points and sometimes
verify their asymptotic stability

• basins of attraction of these fixed points cannot be worked out analytically

Questions:

• Are the strong-disorder phenomena accessible at all in a realistic bare system?

• Is the the strong-disorder physics dominating the phase transition for any bare
disorder strength?

• Is there a critical disorder strength that separates conventional from
strong-disorder behavior?

Monte-Carlo simulations do not only allow us to verify or falsify the theoretically
predicted strong-disorder phenomena, they also help us clarifying the fate of weakly
or moderately disordered systems.



Monte-Carlo simulations of randomly layered Heisenberg model

• large-scale Monte Carlo simulations of three-dimensional Heisenberg (and XY)
models with planar defects

• run in parallel on up to 300 CPUs on the Pegasus Cluster at Missouri S&T

• Wolff cluster algorithm

• finite-size scaling using system sizes up to L⊥ = 800, L∥ = 400

• averages over several hundred disorder configurations



Finite-size scaling of the susceptibility

Strong-disorder RG prediction:

• finite in-plane size L∥ cuts off singularity in
local “gap” distribution because ϵ & 1/L2

∥

• to find susceptibility, run RG to scale Ω = 1/L2
∥

and treat remaining layers as independent

χ ∼ L2
∥ [ln(L∥/a)]

2ϕ−1/ψ at criticality

χ ∼ L
2−2/z
∥ disordered Griffiths phase

χ ∼ L
2+2/z
∥ ordered Griffiths phase

Simulations:

• Monte-Carlo data indeed show nonuniversal
power law in Griffiths phase

• exponent varies in agreement with theoretical
prediction z ∼ 1/(T − Tc)



Spin-wave stiffness

• parallel stiffness ρ
∥
s appears at

T ≈ 0.95 ≈ Tc

• perpendicular stiffness appears
at lower temperature, T ≈ 0.7

• between these temperatures:
anomalous elasticity



Critical dynamics

Time autocorrelation function:

C(t) =
1

L⊥L2
∥

∫
d3r⟨ϕ(r, t)ϕ(r, 0)⟩

Strong-disorder RG prediction:

C(t) ∼ [ln(t/t0)]
ϕ−1/ψ at criticality

C(t) ∼ t−1/z Griffiths phase
1 10 100

t

10-3

10-2

10-1

100

C
(t

)

T
1.0
1.1
1.2
1.3

Simulations:

• critical temperature identified as Tc ≈ 0.9, in agreement with value from χ

• autocorrelation function indeed shows nonuniversal power-laws in Griffiths phase



Conclusions

• randomly layered superfluids, superconductors, and magnets display exotic
finite-temperature behavior analogous to that found at certain disordered
quantum phase transitions

• Heisenberg [O(3)] symmetry: infinite-randomness critical point in the same
universality class as the QCP of the random transverse-field Ising chain

• XY symmetry: interplay between randomness and Kosterlitz-Thouless physics in
the layers leads to hybrid between smeared and sharp phase transition

• in both cases: anomalous elasticity appears in part of the Griffiths phase, excess
free energy due to twisted BC scales with nonuniversal power of system size

• can be probed in nanostructured magnets and superconductors as well as
ultracold atomic gases


