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Phase transitions and disorder

Common lore:

Harris criterion, condition for homogeneous, sharp transition: dν > 2

(spatial fluctuations of local Tc(x) within correlation volume must be smaller than
distance from global critical point Tc)

• if clean critical point fulfills Harris criterion, it is stable against
weak disorder (inhomogeneities vanish at large length scales)

even if the clean critical point is unstable (Harris criterion violated), transition is
generically sharp

• inhomogeneities remain finite at all length scales
⇒ conventional finite-disorder critical point which fulfills dν > 2
or

• inhomogeneities diverge under coarse graining
⇒ infinite-randomness critical point



Rare regions and Griffiths singularities

Example: classical dilute ferromagnet

• critical temperature Tc is reduced
compared to clean value Tc0

• for Tc < T < Tc0:
no global order but local order on rare,
large islands devoid of impurities

• locally ordered islands have slow
dynamics

probability for finding rare region of size L: w ∼ exp(−pLd)
contribution of single rare region to free energy: ∆f ∼ Lx

⇒ singular free energy everywhere in the Griffiths region (Tc < T < Tc0)

Classical Griffiths singularities are generically weak,
magnetic susceptibility remains finite in the Griffiths region



Disorder at quantum phase transitions

quantum phase transitions occur at
zero temperature

• imaginary-time direction becomes
important for critical fluctuations

• quenched disorder is totally correlated
in time direction

⇒ disorder effects are enhanced

t

rare region at a quantum phase

transition

Quantum Griffiths effects

• rare regions at a QPT are finite in space but infinite in imaginary time

• dynamics of the rare regions becomes even slower than in the classical case

⇒ Griffiths singularities are enhanced



Disordered itinerant Heisenberg magnets

antiferromagnetic quantum phase transition of itinerant electrons

LGW free energy functional

Φ = T
∑
q,ωn

M(q, ωn)
[
r0 + q2 + |ωn|2/z

]
M(−q,−ωn) +

u

2N

∫
ddx dτM4(x, τ)

• localized quantum rotors: undamped dynamics, z = 1

• itinerant magnets: magnetic fluctuations are damped, z = 2
|ωn| corresponds to power-law interaction ∼ 1/(τ − τ ′)2 in imaginary time

Quenched disorder:

energy gap becomes random function of position r0 =⇒ r + δr(x)

δr is random variable with 〈δr(x)〉 = 0, 〈δr(x)δr(y)〉 = vδ(x− y)



Quantum Griffiths effects: Scaling arguments

Single rare region:

• equivalent to 1d Heisenberg model with 1/r2 interaction

• rare region is at its lower critical dimension d−c

⇒ energy gap vanishes exponentially with size ε ∼ exp(−bLd)

Quantum Griffiths effects:

combine energy gap with probability for finding rare region w ∼ exp(−pLd)

• power-law density of states ρ(ε) ∼ εc/b−1 = εd/z′−1

• average local susceptibility [χloc(τ)] ∼ τ−d/z′

[χloc(T )] ∼ ∫ 1/T

0
dτ [χloc(τ)] ∼ T d/z′−1

• RR contribution to specific heat ∆C ∼ T d/z′



Quantum Griffiths effects: Large-N calculation

Large-N limit: uM4 −→ 2uN M2 〈M2〉 (N : number of spin components)

Self-consistent equation for the energy gap:

ε = r + u〈M2〉 = r + u
T

Ld

∑
q,ωn

1
ε + q2 + |ωn|2/z

Solutions for small ε:

T 6= 0: q and ωn sums are discrete, leading contribution from q = ωn = 0
ε ∼ L−d −→ weak classical Griffiths effects

T = 0, z < 2: frequency sum turns into integration, singularity gets weaker

ε ∼ L−2d/(2−z) −→ Griffiths effects still exponentially weak

T = 0, z = 2: marginal case, integral diverges only logarithmically

ε ∼ L−2 exp(−bLd) −→ power-law quantum Griffiths effects



Classification of dirty phase transitions according to importance
of rare regions

Dimensionality Griffiths effects Dirty critical point Examples
of rare regions (classical PT, QPT)

dRR < d−c weak exponential conv. finite disorder class. magnet with point defects

dilute bilayer Heisenberg model

dRR = d−c strong power-law infinite randomness Ising model with linear defects

random quantum Ising model

itin. quantum Heisenberg magnet?

dRR > d−c RR become static smeared transition Ising model with planar defects

itinerant quantum Ising magnet



Conclusions

• even weak disorder can have surprisingly strong effects on a quantum phase
transition

• rare regions play a much bigger role quantum phase transitions than a classical
transitions

• effective dimensionality of rare regions determines overall phenomenology of
phase transitions in disordered systems

• in itinerant Heisenberg magnets: rare regions lead to strong power-law
quantum Griffiths effects

• in itinerant Ising magnets: sharp phase transition is destroyed by smearing
because static order forms on rare spatial regions

Quenched disorder at quantum phase transitions leads to a rich variety
of new effects and exotic phenomena


