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ABSTRACT

This work examines the effects of quenched disorder on classical and quantum phase

transitions. There are countless examples of phase transitions in nature. Here, we study

phase transitions in condensed matter with the help of simple models that focus on the

essential unifying features of the problems. We are particularly interested in investigating

how the presence of disorder changes the behavior of the system in the vicinity of a phase

transition.

Here, we discuss three closely related problems regarding phase transitions. First

we consider the behavior of highly diluted magnets with varying dilution levels in order

to explain the unusual phase diagram observed in experiments on hexaferrite materials

through a percolation scenario. Next, we study the response of a two-dimensional planar

(XY) magnet to a finite twist in the boundary conditions. Such boundary conditions are

important for numerous experimental scenarios and computational methods. Then, we

investigate the phase diagram of the disordered quantum clock model in one dimension.

This system exhibits multiple phases and phase transitions that are strongly affected by

disorder.

To understand the phase transitions in the above systems, we analyze the equilibrium

properties of thermodynamic observables using large-scale Monte Carlo simulations. The

utility of the simulations is further enhanced by a sophisticated finite-size scaling analysis.

Our research presents a comprehensive analysis of the disorder dependence of phases

and phase transitions in the aforementioned systems. Through rigorous investigation,

we demonstrate that disorder gives rise to a diverse array of novel phenomena. These

include alterations in universality class, the emergence of infinite randomness criticality,

and Griffiths singularities.
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1. INTRODUCTION

Condensed matter physics is a study of emergent physical properties of matter. Mi-

croscopically, matter is composed of electrons and ions. Understanding how a large number

of these quantum particles interacting strongly with their neighbors lead to the physical

properties of materials is the central objective of the subject. Most of the properties of

practical interest such as transport, thermal, optical and magnetic properties are governed

by the low-energy dynamics of the system. Moreover, many qualitative features of the

collective behavior exhibited by these large systems are believed to be completely char-

acterized by dimensionality and fundamental symmetries, even if the microscopic details

vary. This principle of “universality” allows one to formulate simple model Hamiltonians.

As condensed matter systems consist of a large number of constituents, great progress is

made possible by applying the principles of statistical physics. Alternatively, condensed

matter systems can serve as useful testing platforms for statistical physics.

Many important concepts have been developed based on these ideas, including band

theory of solids, density functional theory, Bardeen-Cooper-Schrieffer theory of supercon-

ductivity, Anderson localization, topological phase transition, and renormalization group

theory. Often, progress has led to even greater mysteries such as high-temperature super-

conductivity, non-Fermi liquid behavior, many-body localization phenomena, topological

phases of matter, etc.

Amongst numerous milestones of the field, the concept of phase transitions is a

crucial one. A phase transition is said to occur when the physical properties of a system

change abruptly as some system parameter is varied. Understanding how the interplay of

interactions and fluctuations can lead to phase transitions naturally provides an organizing

principle in condensed matter physics. Such insight leads to the development and discovery

of new materials whose desirable phases can be controlled.
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1.1. EXAMPLES OF PHASE TRANSITION

We will now present some examples of phase transitions to motivate the subsequent

discussion. Different phases are distinguished using a quantity called order parameter.

Usually order parameter is zero in one phase and non-zero in another phase 1.

1. Hexagonal ferrites such as PbFe12O19, SrFe12O19, BaFe12O19 have wide range of

commercial applications due to their remarkable magnetic properties. These com-

pounds crystallize in the magnetoplumbite structure. A double unit cell consists of

24 Fe3+, all in spin state 𝑆 = 5/2 [1] (see Fig. 1.1). At room temperature, 8 Fe ions

on sublattices 4 𝑓 are oriented anti-parallel to the remaining 16 Fe ions in the double

unit cell, giving rise to nonzero magnetization. If the temperature is increased, net

magnetization decreases , and around 720𝐾 thermal fluctuations dominate to destroy

spontaneous magnetization. The temperature at which this transition to paramagnetic

phase occurs is called the Curie temperature 𝑇𝑐.

2. Next consider the magnetic properties of compounds like LiHoF4 or LiTbF4. The

Ho or Tb spins fluctuate between parallel or antiparallel orientations with respect to

a certain crystalline axis [2]. The magnetic dipolar interaction between the Ho ions

leads to a ferromagnetic state in which all spins point parallel to each other at the

lowest temperatures. Now, the application of magnetic field in transverse direction

to the preferred spin axis facilitates tunneling between the two spin orientations. At

large field strengths compared to magnetic dipolar interaction, the quantum tunneling

can overcome the long-range magnetic order. This transition at 𝑇 = 0 is driven by

quantum fluctuations and is called a quantum phase transition [3].
1Topological phase transitions involve changes in the nonlocal topological invariants. The topologically

ordered phases do not always have a conventional local order parameter associated with them, see example
below.
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Figure 1.1. Double unit cell of PbFe12O19 [1].

3. Liquid Helium undergoes a superfluid phase transition at low temperature. A true

long-range ordered superfluid phase is forbidden in two dimensions by statistical

mechanics [4]. Whether superfluidity exists for a two dimensional Helium film is

therefore an interesting question. It is now understood that two-dimensional Helium

films exhibit topological quasi-long-range order at low temperatures. The superfluid

is populated by bound vortex and antivortex pairs. At high temperatures, these pairs

dissociate, and the free vortices destroy superfluidity. This type of phase transition

lacks an obvious order parameter and is called a topological phase transition [5, 6].

4. Consider a random composite system of metal and ceramics. One can investigate

electrical conductivity of the composite as the volume fractions of the constituents are

varied. At low concentrations of metal, conductivity across the sample will be zero

due to disconnected clusters of the metal particles. For higher metal concentrations,
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the metallic grains form a connected network, and the sample is conducting. The

critical concentration at which sample becomes conducting is called percolation

threshold, and the phase transition across this threshold is referred to as the percolation

phase transition [7].

These examples demonstrate that as we change some control parameter such as temperature,

external magnetic field, or chemical composition, the system undergoes a phase transition.

We are interested in the behavior near phase transitions, also known as critical behavior. A

phase transition can be classified as a first order transition, if there is a finite discontinuity

in the first derivative of the free energy (or, the ground state energy in the case of quantum

phase transition). If the first derivative is continuous, and there is a discontinuity in the

higher derivative of the free energy, then the transition is called a continuous transition.

In the next sections, we will discuss theoretical descriptions of phase transitions and the

effects of disorder.

1.2. THEORETICAL MODELS

There are countless examples of phase transitions in addition to the ones mentioned

above. Developing a complete microscopic description for each problem is a formidable

and near impossible task. However different phase transitions share unifying properties

that only depend on characteristics such as the dimensionality of space, symmetry of the

order parameter, presence of disorder. Great progress can thus be made by keeping only

these essential features of the system under investigation. The resulting “simple” models

are numerically tractable and provide a qualitative understanding of the critical behavior.

Now we introduce two models which are instrumental to understand the phase transition

examples mentioned in the previous section.
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1.2.1. Ising Model. The classical Ising model, consists of “spin” variables on a

hypercubic lattice in 𝑑 dimensions that take values 𝑆𝑖 = ±1 [3]. Its Hamiltonian is given by

𝐻 = −𝐽
∑︁
⟨𝑖 𝑗⟩

𝑆𝑖𝑆 𝑗 − ℎ
∑︁
𝑖

𝑆𝑖 . (1.1)

The first term describes interaction with nearest neighbor spins. If the exchange constant

𝐽 > 0, spins favor parallel alignment and for 𝐽 < 0 anti-parallel alignment. The second

term in the Hamiltonian captures the influence of an external magnetic field ℎ. The partition

function for the Ising model in one dimension can be analytically calculated. The same is

true in two dimensions, but only in the absence of an external field. For higher dimensions or

in the presence of an external field, accurate results can be obtained by powerful numerical

methods such as Monte Carlo simulations, perturbation theory or renormalization group

procedures. Phase transitions do not occur in one-dimensional Ising model. In higher

dimensions, the Ising model undergoes a phase transition between a high-temperature

paramagnetic phase and a low-temperature ferromagnetic phase at critical temperature 𝑇𝑐.

In addition to modeling certain magnetic systems, the Ising model can be applied to many

other systems with binary degrees of freedom.

At low temperatures, the quantum character of the spin variables becomes important. This

can be captured by the quantum Ising model or transverse field Ising model,

𝐻 = −𝐽
∑︁
⟨𝑖 𝑗⟩

𝜎̂𝑧
𝑖
𝜎̂𝑧
𝑖
− ℎ⊥

∑︁
𝑖

𝜎̂𝑥𝑖 − ℎ∥
∑︁
𝑖

𝜎̂𝑧
𝑖

(1.2)

where 𝜎̂ are Pauli matrices. In the basis where 𝜎̂𝑧 is diagonal,

𝜎̂𝑧 =
©­­«
1 0

0 −1

ª®®¬ , 𝜎̂𝑦 =
©­­«
0 −𝑖

𝑖 0

ª®®¬ , 𝜎̂𝑥 =
©­­«
0 1

1 0

ª®®¬ . (1.3)
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The eigenstates of 𝜎̂𝑧, which have eigenvalues ±1, correspond to the two orientations of

Ising spin. In the absence of the transverse-field, ℎ⊥ = 0, the Hamiltonian will be diagonal

in the basis of eigenstates of 𝜎̂𝑧
𝑖
, and the system reduces to the classical Ising model.

Presence of the transverse field induces quantum mechanical tunneling between the two 𝜎̂𝑧

eigenstates.

Lets consider the qualitative behavior of the model at zero temperature and ℎ∥ = 0. If

𝐽 ≫ ℎ⊥, the energy of the ground state is minimized if all the spins are aligned parallely.

This gives us the doubly degenerate ferromagnetic ground state. Spins are correlated over

long distances, and the spin correlation length 𝜉, is infinite (or only limited by the the linear

size 𝐿 of the system). In the opposite limit, 𝐽 ≪ ℎ⊥, the transverse field dominates, i.e.

the ground state is approximately given by a direct product of eigenstates of 𝜎̂𝑥 . Therefore

the 𝜎̂𝑧 values at different sites are uncorrelated. This state is called a quantum paramagnet,

where spin correlations decay exponentially, ⟨𝜎̂𝑧
𝑖
𝜎̂𝑧
𝑗
⟩ ∼ exp(−|𝑥𝑖 − 𝑥 𝑗 |/𝜉). The ground

states in the two limits differ qualitatively from each other, suggesting that for a critical

value(s) of ℎ⊥/𝐽, system undergoes a phase transition. Finally, at nonzero temperatures,

𝑇 > 0 , thermal fluctuations destroy the magnetic order and phase transition occurs at lower

critical value of ℎ⊥/𝐽. The temperature at which magnetic order is destroyed is called the

critical temperature 𝑇𝑐. Fig. 1.2 shows the resulting schematic phase diagram.

1.2.2. Quantum Rotor Model. A quantum rotor can be imagined as a quantum

particle constrained to move on a 𝑁-dimensional hyper-sphere [3]. The orientation of the

rotor can be described by an 𝑁-component unit vector n̂, with n̂2 = 1. Kinetic energy of

the rotor is given by

𝐻𝐾 =
𝑈

2
L̂2 (1.4)

where, 1/𝑈 is the moment of inertia, and L̂ is angular momentum. For 𝑁 = 2, energy

eigenvalues are 𝑈𝑙2/2 for 𝑙 = 0, 1, 2, ..., with degeneracy 2 − 𝛿𝑙,0. For 𝑁 = 3, eigenvalues

are𝑈𝑙 (𝑙 + 1)/2 with degeneracy 2𝑙 + 1.
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Figure 1.2. Schematic phase diagram of the quantum Ising model in 𝑑 ≥ 2 as function of
temperature 𝑇 and 𝑔 = ℎ⊥/𝐽 for ℎ∥ = 0. Quantum phase transition occurs at zero

temperature and at critical value 𝑔𝑐 of tuning parameter. The solid black curve indicates
classical phase transition from ordered to disordered phases. The shaded region is called

the quantum critical region, where signatures of quantum phase transitions are still
accessible at finite temperatures [3].

Now these rotors are placed on an 𝑑-dimensional hypercubic lattice, and they are

coupled to neighbors. The full Hamiltonian of the resulting rotor model reads,

𝐻 =
𝑈

2

∑︁
𝑖

L̂2
𝑖 − 𝑡

∑︁
⟨𝑖 𝑗⟩

n̂𝑖 · n̂ 𝑗 . (1.5)

The interaction energy is minimized when the rotors are oriented parallely, i.e. in a

long-range ordered state. On the other hand, the kinetic energy is minimized when the

orientations of the rotors is maximally uncertain. In the absence of interaction term, the

system will prefer to be in quantum disordered state where the rotors are uncorrelated and

oriented randomly.
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Consider the case of 𝑁 = 2. The components of the rotor can be described by

n̂𝑖 = (cos 𝜃𝑖, sin 𝜃𝑖), where an angular variable 𝜃𝑖 is introduced at each site. In the angle

eigenbasis, the angular momentum operator is given by, 𝐿̂𝑖 = 1
𝑖
𝜕
𝜕𝜃𝑖

. Then the Hamiltonian

reads,

𝐻 =
𝑈

2

∑︁
𝑖

(
1
𝑖

𝜕

𝜕𝜃𝑖

)2
− 𝑡

∑︁
⟨𝑖 𝑗⟩

cos(𝜃𝑖 − 𝜃 𝑗 ). (1.6)

In the large 𝑈 limit, the eigenstates of the Hamiltonian are simultaneous eigenstates of

angular momentum, and are denoted by
∏
𝑖 |𝑚𝑖⟩, where𝑚𝑖 is the integer angular momentum

associated with the wave functions exp(𝑖𝑚𝑖𝜃𝑖).

There are no elementary quantum rotors in nature. However, the quantum rotor

Hamiltonian eq. (1.6) can be understood as a limiting case of the Bose Hubbard model,

𝐻𝐵 = −𝑡
∑︁
⟨𝑖 𝑗⟩

(𝑏̂†
𝑖
𝑏̂ 𝑗 + 𝑏̂†𝑗 𝑏̂𝑖) − 𝜇

∑︁
𝑖

𝑛̂𝑏𝑖 +
𝑈̃

2

∑︁
𝑖

𝑛̂𝑏𝑖 (𝑛̂𝑏𝑖 − 1) (1.7)

where, 𝑛̂𝑏𝑖 = 𝑏̂
†
𝑖
𝑏̂𝑖 is a number operator, 𝑏̂𝑖, 𝑏̂†𝑖 are the boson annihilation and creation

operators on the site 𝑖. They satisfy commutation relation, [𝑏̂𝑖, 𝑏̂†𝑗 ] = 𝛿𝑖 𝑗 . The first term

allows hopping of bosons between nearest neighbors. The second term corresponds to

chemical potential 𝜇 and controls the total number of bosons. The last term captures on-site

interaction between the bosons. In the limit, 𝑡 ≫ 𝑈̃, hopping dominates and lowest energy

state is delocalized boson condensate. If interaction dominates, 𝑡 ≪ 𝑈̃, strong on-site

repulsion prevents addition of new bosons and global coherence is not possible and ground

state is the Mott insulator.

In the limit of large integer filling, 𝑛𝑏 ≫ 1, Bose-Hubbard Hamiltonian can be

written in the angle representation as quantum rotor Hamiltonian as written in eq. (1.6).

Alternatively, quantum rotors also appear as effective degree of freedom in certain quantum

magnets.
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1.3. QUANTUM-CLASSICAL CORRESPONDENCE

In this section, we show that the partition function of the quantum rotor model (1.6)

can be mapped onto that of a classical Hamiltonian called the XY model [8]. The quantum

rotor Hamiltonian (1.6) can be decomposed into the kinetic energy part 𝑇 , and the potential

energy, 𝑉̂

𝑇 =
𝑈

2

∑︁
®𝑟

(
1
𝑖

𝜕

𝜕𝜃®𝑟

)2

, 𝑉̂ = −𝑡
∑︁
⟨®𝑟,®𝑟 ′⟩

cos(𝜃®𝑟 ′ − 𝜃®𝑟).

(Note that we are using ®𝑟 and ®𝑟′ to denote spatial positions. )

The partition function of the quantum rotor model,

𝑍 = Tr(e−𝛽𝐻̂) = Tr(e−𝛽(𝑇+𝑉̂)), (1.8)

can be expressed in terms of the angle eigenbasis

𝑍 =

∫
D𝜃 ⟨𝜃 |e−𝛽(𝑇+𝑉̂) |𝜃⟩ = lim

𝑀→∞

∫
D𝜃 ⟨𝜃 |

(
e−

𝛽

𝑀
𝑇e−

𝛽

𝑀
𝑉̂
)𝑀

|𝜃⟩

where we have used the Trotter product formula, 𝑒 𝐴̂+𝐵̂ = lim
𝑀→∞

(𝑒 𝐴̂/𝑀𝑒 𝐴̂/𝑀)𝑀 . Inserting

complete sets of angle eigenstates, we obtain

𝑍 = lim
𝑀→∞

∫
D𝜃 ⟨𝜃 (𝜏0) | (e−

𝛽

𝑀
𝑇e−

𝛽

𝑀
𝑉̂ ) |𝜃 (𝜏1)⟩ ... ⟨𝜃 (𝜏𝑀−1) | (e−

𝛽

𝑀
𝑇e−

𝛽

𝑀
𝑉̂ ) |𝜃 (𝜏0)⟩

The action of 𝑉̂ on the angle eigenstates is straight-forward. Denoting Δ𝜏 =
𝛽

𝑀
we obtain,

exp(−Δ𝜏𝑉̂) |𝜃 (𝜏𝑗 )⟩ = exp ©­«Δ𝜏𝑡
∑︁
⟨®𝑟,®𝑟 ′⟩

cos[𝜃®𝑟 ′ (𝜏𝑗 ) − 𝜃®𝑟 (𝜏𝑗 )]
ª®¬ |𝜃 (𝜏𝑗 )⟩ . (1.9)
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Then,

𝑍 =

∫
D𝜃

𝑀−1∏
𝑗=0

exp ©­«Δ𝜏𝑡
∑︁
⟨®𝑟,®𝑟 ′⟩

cos[𝜃®𝑟 ′ (𝜏𝑗 ) − 𝜃®𝑟 (𝜏𝑗 )]
ª®¬ ⟨𝜃 (𝜏𝑗 ) | exp(−Δ𝜏𝑇) |𝜃 (𝜏𝑗+1)⟩ . (1.10)

As the kinetic energies on different sites commute, we can treat each site separately,

𝑇𝑗 = ⟨𝜃 (𝜏𝑗 ) | exp(−Δ𝜏𝑇) |𝜃 (𝜏𝑗+1)⟩ (1.11)

=
∏
®𝑟

⟨𝜃 (𝜏𝑗 ) | exp
(
−Δ𝜏𝑈

2
𝜕2

𝜕𝜃2

)
|𝜃 (𝜏𝑗+1)⟩ (1.12)

Let |𝐽𝜏®𝑟 (𝜏𝑗 )⟩ be an integer-valued angular momentum eigenstate at ®𝑟 at 𝜏𝑗 . Its corresponding

wavefunction in the angle eigenbasis is, ⟨𝜃 (𝜏𝑗 ) |𝐽𝜏®𝑟 (𝜏𝑗 )⟩ = exp(𝑖𝐽𝜏®𝑟 (𝜏𝑗 )𝜃®𝑟 (𝜏𝑗 )). We now

insert complete sets of angular momentum states into eq. (1.12)

𝑇𝑗 =
∏
®𝑟

∑︁
{𝐽}

∑︁
{𝐽′}

⟨𝜃 (𝜏𝑗 ) |𝐽®𝑟 (𝜏𝑗 )⟩ ⟨𝐽®𝑟 (𝜏𝑗 ) | exp
(
−Δ𝜏𝑈

2
𝜕2

𝜕𝜃2

)
|𝐽′®𝑟 (𝜏𝑗 )⟩ ⟨𝐽

′
®𝑟 (𝜏𝑗 ) |𝜃 (𝜏𝑗+1)⟩

=
∏
®𝑟

∑︁
{𝐽}

⟨𝜃 (𝜏𝑗 ) |𝐽®𝑟 (𝜏𝑗 )⟩ ⟨𝐽®𝑟 (𝜏𝑗 ) |𝜃 (𝜏𝑗+1)⟩ exp
(
−Δ𝜏𝑈

2
𝐽2
®𝑟 (𝜏𝑗 )

)
= exp

(
𝑖𝐽®𝑟 (𝜏𝑗 ) [𝜃®𝑟 (𝜏𝑗 ) − 𝜃®𝑟 (𝜏𝑗+1)]

)
exp

(
−Δ𝜏𝑈

2
𝐽2
®𝑟 (𝜏𝑗 )

)
.

Therefore,

𝑍 =

∫
D𝜃

𝑀−1∏
𝑗=0

∑︁
{𝐽}

exp ©­«Δ𝜏𝑡
∑︁
⟨®𝑟,®𝑟 ′⟩

cos[𝜃®𝑟 ′ (𝜏𝑗 ) − 𝜃®𝑟 (𝜏𝑗 )]
ª®¬

× exp

(∑︁
®𝑟
𝑖𝐽®𝑟 (𝜏𝑗 ) [𝜃®𝑟 (𝜏𝑗 ) − 𝜃®𝑟 (𝜏𝑗+1)]

)
exp

(∑︁
®𝑟
−Δ𝜏𝑈

2
𝐽2
®𝑟 (𝜏𝑗 )

)
.

We have thus arrived at a representation of the partition function in terms of the classical

variables 𝜃®𝑟 (𝜏𝑗 ) and 𝐽®𝑟 (𝜏𝑗 ). Now one can proceed in one of two ways. If we integrate out the

angle variables 𝜃®𝑟 (𝜏𝑗 ), we will obtain a so-called 𝐽−current model. Or, if we integrate out

the integer angular momentum variables {𝐽}, we will obtain a 𝑑 + 1 dimensional classical
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model in terms of the 𝜃®𝑟 (𝜏𝑗 ).

To simplify the above expression for 𝑍 , we can use Poisson summation formula,

∞∑︁
𝐽=−∞

𝑔(𝐽) =
∞∑︁

𝑚=−∞

∫
𝑑𝜙e2𝜋𝑖𝑚𝜙𝑔(𝜙). (1.13)

Therefore, for our case,

∑︁
{𝐽}

e𝑖𝐽 (𝜏𝑗 ) [𝜃 (𝜏𝑗 )−𝜃 (𝜏𝑗+1)]e−Δ𝜏𝑈𝐽
2 (𝜏𝑗 )/2

=

∞∑︁
𝑚=−∞

∫
𝑑𝐽e2𝜋𝑖𝑚𝐽 exp

(
−Δ𝜏𝑈

2
𝐽2(𝜏𝑗 )

)
exp

(
𝑖𝐽 (𝜏𝑗 ) [𝜃 (𝜏𝑗 ) − 𝜃 (𝜏𝑗+1)]

)
=

∞∑︁
𝑚=−∞

∫
𝑑𝐽 exp

(
−

(
Δ𝜏𝑈

2
𝐽 − 1

√
2Δ𝜏𝑈

( [𝜃 (𝜏𝑗 ) − 𝜃 (𝜏𝑗+1)] − 2𝜋𝑚)
)2

)
× exp

(
− 1

2Δ𝜏𝑈
( [𝜃 (𝜏𝑗 ) − 𝜃 (𝜏𝑗+1)] − 2𝜋𝑚)2

)
=

∞∑︁
𝑚=−∞

√︂
2𝜋
Δ𝜏𝑈

exp
(
− 1

2Δ𝜏𝑈
( [𝜃 (𝜏𝑗 ) − 𝜃 (𝜏𝑗+1)] − 2𝜋𝑚)2

)
.

In the last step, integral over 𝐽 is a Gaussian integral. We now apply the Villain approxima-

tion. The exponential of a periodic function can be approximated by a periodic sequence

of narrow Gaussians,

∞∑︁
𝑚=−∞

exp
(
− 1

2Δ𝜏𝑈
( [𝜃 (𝜏𝑗 ) − 𝜃 (𝜏𝑗+1)] − 2𝜋𝑚)2

)
≈ e

1
Δ𝜏𝑈

cos[𝜃 (𝜏𝑗 )−𝜃 (𝜏𝑗+1)] (1.14)

therefore we can write the partition function of the quantum rotor model as

𝑍 =

∫
D𝜃 exp ©­«Δ𝜏𝑡

∑︁
⟨®𝑟,®𝑟 ′⟩

cos[𝜃®𝑟 ′ (𝜏𝑗 ) − 𝜃®𝑟 (𝜏𝑗 )] +
∑︁
®𝑟

1
Δ𝜏𝑈

cos[𝜃®𝑟 (𝜏𝑗 ) − 𝜃®𝑟 (𝜏𝑗+1)]ª®¬
(1.15)
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We obtain an action with additional dimension, the 𝜏−direction which represents imaginary

time. The action corresponds to a (𝑑 + 1) dimensional classical Hamiltonian,

𝐻 = −
∑︁
®𝑟,®𝑟 ′𝜏𝑗

𝐽𝑠 cos[𝜃®𝑟 ′ (𝜏𝑗 ) − 𝜃®𝑟 (𝜏𝑗 )] −
∑︁
®𝑟,𝜏𝑗

𝐽𝜏 cos[𝜃®𝑟 (𝜏𝑗 ) − 𝜃®𝑟 (𝜏𝑗+1)] (1.16)

where, we define, 𝐽𝑠 = 𝑡Δ𝜏 for the spatial bonds, and 𝐽𝜏 = 1/Δ𝜏𝑈 for the temporal bonds.

The classical Hamiltonian eq. (1.16) is the well-known classical XY model. Hence we

established a correspondence between 𝑑-dimensional quantum rotor model and the 𝑑 + 1

dimensional classical XY model. In the next sections we will discuss some basic properties

of phase transitions and critical behavior of the classical XY model.

Quantum-classical mapping proves a very effective strategy to study equilibrium

properties because powerful tools developed for classical phase transitions can be used.

This has limitations when the states of mapped classical model have complex Gibbs weights,

giving rise to unphysical negative probabilities. Moreover, a lot of physical properties of

interest such as energy spectrum, correlation functions, etc. are related to real time functions.

The mapped classical system describes imaginary time dynamics, and one can obtain real-

time properties by analytic continuation. Analytic continuation is an ill-posed problem

and hence it might limit the usefulness of classical analogue. As quenched disorder is

time-independent, the quantum to classical mapping in disordered system produces defects

which are extended along the imaginary time axis. As we will see later, this property has

important implications for the critical behavior.
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1.4. MEAN FIELD THEORY

Mean Field Theory (MFT) is powerful approximation method used to simplify the

analysis of many-body systems. The interactions between particles are approximated by

considering the effect of all other particles on any given particle as an average, or “mean

field”, rather than explicitly accounting for all individual interactions. We will present the

example of the classical XY model to demonstrate the idea of MFT [3].

Consider a ferromagnetic classical XY model,

𝐻 = −𝐽
∑︁
⟨𝑖 𝑗⟩

®𝑆𝑖 · ®𝑆 𝑗 = −𝐽
∑︁
⟨𝑖 𝑗⟩

cos(𝜃𝑖 − 𝜃 𝑗 ) (1.17)

where, ®𝑆 = (cos 𝜃, sin 𝜃) is a unit vector, and 𝜃 ∈ [0, 2𝜋). The partition function is given by

𝑍 =
∏
𝑖

∫ 2𝜋

0
𝑑𝜃𝑖 exp(−𝛽𝐻). (1.18)

If we focus on fluctuations of one arbitrary spin ®𝑆𝑖, the local Hamiltonian can be approxi-

mated as,

−𝐽 ®𝑆𝑖 · ©­«
∑︁
⟨ 𝑗⟩

®𝑆 𝑗ª®¬ ≈ −𝐽 ®𝑆𝑖 · ©­«
∑︁
⟨ 𝑗⟩

⟨ ®𝑆 𝑗 ⟩ª®¬ (1.19)

where the 𝑗 sum is over the neighbors of site 𝑖. If all the neighbors are replaced by their

average, the Hamiltonian is equivalent to that of a spin in a local field (see Fig. 1.3). This

approximation is called the mean-field approximation. To formally derive the mean-field

approximation, we can use a variational principle based on the Bogolibov inequality,

𝐹 ≤ 𝐹MF + ⟨𝐻 − 𝐻MF⟩MF. (1.20)
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Figure 1.3. A spin experiences a local field created by its neighbors. In the mean field
approximation, all the neighbor spins in the shaded area are replaced by their average

value.

Here 𝐻MF is a variational Hamiltonian which we take to have the form of independent spins

in a field,

𝐻MF = −®ℎMF ·
∑︁
𝑖

®𝑆𝑖 = −
∑︁
𝑖

ℎ cos 𝜃𝑖 (1.21)

where, without the loss of generality, we assume ®ℎMF = ℎ𝑥. The partition function reads,

𝑍MF =
∏
𝑖

∫ 2𝜋

0
𝑑𝜃𝑖 exp(𝛽ℎ cos 𝜃𝑖) = (2𝜋𝐼0(ℎ))𝑀 (1.22)

where, 𝐼0 is a Bessel function of first kind and 𝑀 is total number of spins. This yields,

𝐹MF = −𝑀𝑘𝐵𝑇 ln(2𝜋𝐼0(𝛽ℎ)). (1.23)
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Magnetization ®𝑚 can be obtained from the free energy,

®𝑚 = ⟨ ®𝑆𝑖⟩MF = − 1
𝑀

𝜕𝐹MF
𝜕ℎ

𝑥 =
𝑘𝐵𝑇

2𝜋𝐼0(𝛽ℎ)
𝜕𝐼0(𝛽ℎ)
𝜕ℎ

𝑥. (1.24)

Now let us estimate the mean field parameter ℎ by minimizing 𝐹MF according to eq. (1.20),

𝐹 ≤ 𝐹MF − 𝐽∑
⟨𝑖 𝑗⟩ ⟨ ®𝑆𝑖 . ®𝑆 𝑗 ⟩MF + ®ℎMF.

∑
𝑖 ⟨ ®𝑆𝑖⟩MF (1.25)

𝐹 ≤ −𝑀 ln(2𝜋𝐼0(𝛽ℎ)) − 𝑀𝑑𝐽𝑚2 + 𝑀ℎ𝑚 (1.26)

The stationarity condition,

𝜕𝐹

𝜕𝑚
≤ 𝜕𝐹MF

𝜕ℎ

𝜕ℎ

𝜕𝑚
− 2𝑀𝑑𝐽𝑚 + 𝑀ℎ + 𝑀𝑚 𝜕ℎ

𝜕𝑚
. (1.27)

The first and last term cancel and therefore for stationarity, ℎ = 2𝐽𝑑𝑚. Substituting this in

eq. (1.24), we obtain mean field equation for magnetization 𝑚,

𝑚 =
𝐾𝐵𝑇

4𝜋𝐽𝑑𝐼0(2𝛽𝐽𝑑𝑚)
𝜕𝐼0(2𝛽𝐽𝑑𝑚)

𝜕𝑚
. (1.28)

Similarly, mean field equations for other observables can be obtained. Let us plot the free

energy from eq. (1.26) for different values of 𝛽𝐽. As shown in Fig. 1.4, free energy changes

qualitatively at 𝛽𝐽 = 𝛽𝐽𝑐 = 1
𝑑

. For 𝛽𝐽 < 𝛽𝐽𝑐, 𝐹 has a single minimum at 𝑚 = 0, this is

the paramagnetic phase of the XY model. For 𝛽𝐽 > 𝛽𝐽𝑐, 𝐹 has two degenerate minima at

non-zero magnetization. Recall, earlier we had set ®ℎMF, ®𝑚 to point along 𝑥. However, this

is an arbitrary choice, therefore the minimum for 𝛽𝐽 > 𝛽𝐽𝑐, is not just doubly degenerate,

but due to rotational invariance within 𝑥 − 𝑦 plane, infinitely degenerate. If 𝛽𝐽 > 𝛽𝐽𝑐,

the system will spontaneously choose one of these equivalent minima, i.e. magnetization

direction. This phenomena is called ‘spontaneous symmetry breaking’.
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m

F

J < Jc
J Jc
J > Jc

Figure 1.4. Mean-field free energy 𝐹 as a function of the magnetization 𝑚, for different 𝛽𝐽
from eq. (1.26).

1.4.1. Landau Theory. A systematic understanding of mean-field theory is due

to Landau, who proposed that the free energy can be expanded in powers of the order

parameter

𝐹𝐿 (𝑚) = 𝐹0 − ℎ𝑚 + 𝑡𝑚2 + 𝑘𝑚3 + 𝑢𝑚4 + O(𝑚5). (1.29)

Here, 𝑚 is the order parameter and the coefficients ℎ, 𝑡, 𝑘, 𝑢 only depend on the external

parameters (external field, temperature, pressure, etc.). For each set of external parameters,

value of 𝑚 can be obtained by minimizing the free energy 𝐹𝐿 (𝑚). The Landau theory eq.

1.29 captures the universality of critical behavior between different systems and explains

how symmetry of order parameter is broken spontaneously at the phase transition.
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1.4.2. Landau-Ginzburg-Wilson Theory. Now we discuss Landau-Ginzburg -

Wilson theory, which generalizes the above discussion [3]. So far the free energy was

expressed in terms of a single spatially uniform order parameter 𝑚. However, the spins

are not expected to have uniform, time-independent values. Therefore, we generalize 𝑚 by

introducing a continuous, coarse-grained order parameter field 𝜙𝛼 (®𝑟) where 𝛼 = 1, 2, ..., 𝑁 ,

and define a free energy functional F [ ®𝜙(®𝑟)]. A few considerations in writing F [ ®𝜙(®𝑟)] are,

• if the system is invariant under 𝑂 (𝑁) rotations of ®𝜙(®𝑟), F [ ®𝜙(®𝑟)] should be invariant

under global rotations.

• In the vicinity of a continuous phase transition, ®𝜙(®𝑟) is small, so expanding F [ ®𝜙(®𝑟)]

in a power series in ®𝜙 is justified.

• in contrast to mean-field theory, the free energy functional F allows spatial variations

in local magnetic order and assumes that the variations occur at much larger length

scale compared to lattice spacings.

Therefore, the Landau-Ginzburg-Wilson free energy functional is given by

F =

∫
𝑑𝑑®𝑟

{
1
2

[
𝐾 (∇®𝑟 ®𝜙)2 + 𝑡𝜙2(®𝑟)

]
+ 𝑢

4!

(
𝜙2(®𝑟)2

)}
, (1.30)

where 𝐾, 𝑡, 𝑢 are nonuniversal parameters. To make comparison with earlier discussion, we

first identify the expectation value of ®𝜙(®𝑟) with magnetization,

⟨ ®𝜙(®𝑟)⟩ = ®𝑚. (1.31)

Landau (mean-field) theory is recovered as the saddle point solution of the Landau-

Ginzburg-Wilson free energy functional,

𝛿F
𝛿𝜙

=

∫
𝑑𝑑®𝑟

(
𝑡⟨𝜙⟩ + 𝑢

6
⟨𝜙⟩3

)
= 0. (1.32)
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For 𝑡, 𝑢 > 0, F is minimized if 𝜙(®𝑟) = 0. This corresponds to the paramagnetic solution.

For 𝑡 < 0, 𝑢 > 0, the optimal value of 𝜙(®𝑟) will be non-zero. The invariance of F under

𝑂 (𝑁) rotations is also expected to be preserved by ®𝜙, therefore we have solutions that can

be mapped to each other under 𝑂 (𝑁) rotations. For 𝑡 < 0, minimizing F gives

𝑚 =

√︂
−6𝑡
𝑢
. (1.33)

This means, as 𝑡 → 0, 𝑚 vanishes, marking the critical point. Also, mean-field theory

predicts 𝑚 ∼ 𝑡1/2, i.e. irrespective of the microscopic details, exponent 1/2 would be

observed universally for all phase transitions with 𝑂 (𝑁) symmetry of order parameter.

While Landau-Ginzburg-Wilson theory provides qualitative insights, it may fail to

accurately predict the critical exponents. In lower dimensions, fluctuations in eq. 1.30

dominate in wider regions near critical point. The upper critical dimension 𝑑+ is the spatial

dimensionality above which the fluctuations are negligible and the Landau theory is exact.

For 𝑑 between the upper critical and lower critical dimension, 𝑑− < 𝑑 < 𝑑+, the critical

behavior is different than that of Landau theory. Finally, for 𝑑 < 𝑑−, fluctuations completely

dominate and ordered phase does not exist [9].

1.5. UNIVERSALITY AND CRITICAL EXPONENTS

Even though Landau theory is not universally valid, the notion of power-law singu-

larities, characterized by critical exponents applies to all (continuous) phase transitions. In

this section, we define critical exponents associated with some thermodynamic observables

[10]. First, define the reduced temperature 𝑡 as a measure of distance from the critical

temperature,

𝑡 =
𝑇 − 𝑇𝑐
𝑇𝑐

. (1.34)
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The scaling hypothesis assumes that, in the vicinity of critical points, the correlation length

𝜉 diverges as a power of 𝑇 − 𝑇𝑐. Therefore we can write,

𝜉 ∼ |𝑇 − 𝑇𝑐 |−𝜈 (1.35)

where 𝜈 is the correlation length critical exponent. Other observables also follow power-law

dependencies, allowing us to define other critical exponents. The magnetization𝑚 vanishes

near 𝑇𝑐, at zero external field. Correspondingly the critical exponent 𝛽 is defined as,

𝑚 ∼ (𝑇𝑐 − 𝑇)𝛽. (1.36)

The critical exponent 𝛿 is determined by the dependence of 𝑚 on the external field ℎ at the

critical temperature,

𝑚 ∼ ℎ1/𝛿 . (1.37)

The magnetic susceptibility is defined as 𝜒 = 𝜕𝑚/𝜕ℎ|ℎ→0. Critical exponent associated

with the behavior of 𝜒 is defined as,

𝜒 ∼ |𝑇 − 𝑇𝑐 |−𝛾 (1.38)

The specific heat is defined as𝐶 = −𝑇 (𝜕2𝐹/𝜕𝑇2)ℎ→0. The corresponding critical exponent

at 𝑇𝑐 is defined as,

𝐶 ∼ (|𝑇 − 𝑇𝑐 |)−𝛼 (1.39)

Although, the critical temperature depends on the details of microscopic interactions, critical

exponents are largely universal. Systems can be divided into broad groups, known as

‘universality classes’, such that all systems belonging to a given class have the same critical
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exponents. Universality classes depend on dimensionality, and symmetries. To study the

critical behavior, identification of the universality class is helpful in choosing a simple

model belonging to the same class.

1.6. FINITE SIZE SCALING

At a critical point, the free energy functional is invariant under a scaling transforma-

tion, i.e. a change of length scale. The study of scaling transformations on the free energy

is the subject of ‘renormalization group theory’. The concepts of universality, scaling laws

and critical exponents can be derived using the renormalization group (as was done when

they were discovered in the 1960s and 1970s)[11, 12]. Here, we proceed by treating them as

phenomenological hypotheses. Close to a critical point, the correlation length 𝜉 is the only

relevant length scale. Therefore, physics remains the same even after rescaling the system

as,

𝑥 → 𝑥′ =
𝑥

𝑏

(Here 𝑏 is the rescaling factor for the position variable 𝑥), provided the external parameters

are adjusted such that 𝜉 remains unchanged. The condition of statistical similarity under

scaling is,

Tr(e−𝛽𝐻) = Tr′(e−𝛽𝐻′) (1.40)

where prime indices are for the scaled system. This procedure maps couplings of the

Hamiltonian {𝑡, ℎ} to a new set of couplings {𝑡′, ℎ′}, such that free energy density fulfills,

𝐹 (𝑡, ℎ) = 𝑏−𝑑𝐹 (𝑡′, ℎ′). This mapping represents flows in the parameter space. We will now

investigate scaling in a system with linear size 𝐿. From eq. (1.35 )and (1.39), specific heat

in the vicinity of critical point, 𝐶 ∼ 𝜉 𝛼𝜈 . For a finite system, the correlation length 𝜉 cannot

exceed 𝐿. As a result, specific heat 𝐶 would be bounded from above. The specific heat

follows a scaling form,

𝐶 (𝑡, 𝐿−1) = 𝑡−𝛼𝑋𝐶 (𝐿−1𝑡−𝜈) (1.41)
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𝐶 (𝑡, 𝐿−1) = 𝑡−𝛼 (𝐿−1𝑡−𝜈) −𝛼
𝜈 𝑌𝐶 (𝑡𝐿1/𝜈) (1.42)

𝐶 (𝑡, 𝐿−1) = 𝐿 𝛼
𝜈𝑌𝐶 (𝑡𝐿1/𝜈) (1.43)

where, 𝑌𝐶 (𝑥) is a new scaling function with a maximum at 𝑥 = 𝑥∗. Therefore, the specific

heat peak occurs at a reduced temperature shifted from that of the infinite system by amount,

𝑡𝐿 = 𝑥∗/𝐿1/𝜈 ∝ 𝐿−1/𝜈 . (1.44)

The maximum of the specific heat is,

𝐶 (𝑡𝐿 , 𝐿−1) = 𝐿𝛼/𝜈𝑌𝐶 (𝑥∗) ∝ 𝐿𝛼/𝜈 (1.45)

In the later sections we will use this effect to estimate asymptotic critical temperature and

critical exponents from the Monte Carlo simulation of finite systems. Analogous scaling

forms can be derived for other observables.

1.7. DISORDER EFFECTS ON CRITICAL BEHAVIOR

Disorder is ubiquitous in condensed matter systems. Imperfections in the form of

vacancies, impurity atoms, or extended defects are unavoidable in practice. Although the

random nature of disorder might be difficult to treat using theoretical methods, disorder

leads to a new set of emergent phenomena, which are impossible to realize in clean systems.

In this section we will develop qualitative ideas related to effects of disorder on critical

behavior.

1.7.1. Harris Criterion. A system with disorder is by nature inhomogeneous. It

is therefore not a priory known whether it can show singular behavior at a specific critical

point. As disorder varies from point to point, there will be spatial regions which are



22

away from the critical point, even if the macroscopically the system is at the critical point.

Whether the critical point of a clean system is stable under the introduction of weak disorder

was studied by Harris. Here we present a simple argument for the Harris criterion [13].

Consider a sub-region of size 𝐿, marked by an index 𝑟. We can define a critical

temperature of this region, 𝑇𝑐,𝑟 , which generally will be different than the global critical

temperature 𝑇𝑐. From a central limit theorem, local fluctuations will cause variations in 𝑇𝑐,𝑟

of order 𝐿−𝑑/2. Such a deviation is significant if it is of the order |𝑇 − 𝑇𝑐 |. Therefore, for

length scales shorter than 𝐿 = 𝐿𝑟 ∼ |𝑇 − 𝑇𝑐 |−2/𝑑 , deviations are significant. Now if 𝐿𝑟 is

smaller than the correlation length, as critical point is approached, and 𝜉 ∼ |𝑇 − 𝑇𝑐 |−𝜈, the

local fluctuations will be averaged out. Thus, the stability requirement is, 𝐿 ≪ 𝜉, i.e.

|𝑇 − 𝑇𝑐 |−2/𝑑 ≪ |𝑇 − 𝑇𝑐 |−𝜈 . (1.46)

This leads to the Harris criterion,

𝑑𝜈 ≥ 2. (1.47)

If the above inequality is violated, then the critical behavior is disorder dependent. Critical

behavior in disordered systems can be understood based on three cases [14],

1. If Harris criterion eq (1.47) is satisfied, the disorder strength goes to zero under coarse

graining. The critical behavior is that of the clean system.

2. If eq (1.47) is violated, there are two possibilities

(a) In this case, under coarse graining, if the system remains inhomogeneous and the

disorder strength approaches a finite constant. The critical behavior is governed

by conventional power-laws, but the critical exponents differ from the clean

version.
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Table 1.1. Classification of critical points in the presence of random-𝑇𝑐 disorder [9, 14].

RR dimension Harris criterion Griffiths singularities Critical behavior
𝑑RR < 𝑑

− 𝑑𝜈 > 2 weak clean
𝑑RR < 𝑑

− 𝑑𝜈 < 2 weak conventional
𝑑RR = 𝑑− 𝑑𝜈 > 2 power-law, 𝑧′ finite clean
𝑑RR = 𝑑− 𝑑𝜈 < 2 power-law, 𝑧′ diverges infinite disorder
𝑑RR > 𝑑

− RR freeze smeared transition

(b) Finally, disorder strength goes to infinity at the large length scales. As a result

of infinite randomness, critical points show unconventional activated scaling

behavior. Intsead of power-law relation, correlation length and imaginary time

are related by an exponential relation.

1.7.2. Rare Regions and Griffiths-McCoy Singularities. Now we will discuss the

effects of rare strong disorder fluctuations on phase transitions. As an example consider the

case of a dilute ferromagnet. Due to statistical fluctuations, there may exist a large disorder-

free region. If the system overall is close to the critical temperature in the paramagnetic

phase, this disorder free region would already be in the symmetry broken, ordered phase.

It would thus make a large contribution to thermodynamic quantities. Singularities in the

free energy caused by the rare regions are called Griffiths singularities.

Rare regions play a significant role if they change the behavior of thermodynamic

obsevables. The probability for forming a rare region of size 𝐿RR is exponentially small,

𝑝(𝑉RR) ∼ exp(−𝑎𝑉RR), where 𝑉RR is the volume of the rare region. One can imagine

each rare region as a superspin, whose magnetic moment is proportional to the volume

𝑉RR. Then the magnetic susceptibility 𝜒(𝑉RR) ∼ 𝑉2
RR/𝑇 . Thus, 𝜒 increases quadratically,

while the probability 𝑝(𝑉RR) decreases exponentially with the volume of rare region. In the

thermodynamic limit, such Griffiths singularity will practically be unobsevable.
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(a) 𝑝 = 0.3 (b) 𝑝 = 𝑝𝑐 ≈ 0.59 (c) 𝑝 = 0.7

Figure 1.5. Example of site percolation on 12 × 12 square lattice, for various dilution 𝑝.
Empty sites are denoted by white squares and occupied sites by black squares.

However, there are situations when the contribution of a rare region to the obsevables

increases exponentially with its volume. The presence of rare regions in quantum systems

might result in gapped spectrum, which leads to large response in susceptibility. Also,

classical systems with extended defects have higher probabilities of forming rare regions,

and might show stronger Griffiths singularities. The connection between rare regions and

Harris criterion has been studied in the literature and a classification criterion similar to

Harris is shown in the table 1.1.

1.7.3. Percolation Theory. Percolation theory studies the behavior of connected

clusters in a random network or lattice. By adding or removing system components, one

can study the changes in the connectivity. Figure 1.5 shows an example of a square lattice,

where the probability of any given site to be unoccupied is denoted by 𝑝. A cluster is

defined as a set of lattice sites which are connected by an edge. As 𝑝 is increased, the

number of finite clusters increases. The critical probability after which an infinite cluster

(i.e. a cluster spanning the entire system in the infinite system limit) disappears, is called

the percolation threshold 𝑝𝑐. For a square lattice 𝑝𝑐 ≈ 0.59[15]. Near the critical point 𝑝𝑐,

many system properties follow power-law scaling, therefore the system is said to undergo a

percolation phase transition at 𝑝𝑐.
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Here, we will study the effects of percolation on dilute magnets at low temperatures.

Consider a classical site-diluted Hamiltonian,

𝐻 = −𝐽
∑︁
⟨𝑖, 𝑗⟩

𝜖𝑖𝜖 𝑗𝑆𝑖𝑆 𝑗 (1.48)

where the presence or absence of the spin at a site is denoted using the variable 𝜖 ,

𝜖 =


0 with probability 𝑝

1 with probability 1 − 𝑝.

In the clean system, i.e. 𝑝 = 0, phase transition occurs at 𝑇𝑐. As dilution 𝑝 increases,

the critical temperature decreases. The two distinct phases, magnetic order and thermal

paramagnet, are separated by the phase boundary𝑇𝑐 (𝑝). Now, for high dilutions 𝑝 > 𝑝𝑐, the

system consists of finite disconnected clusters. At low temperatures, each of these clusters

can independently prefer up or down orientation, resulting in net zero magnetization.

Therefore, the magnetic order cannot exist for 𝑝 > 𝑝𝑐. A schematic phase diagram is

shown in Fig. 1.6.

1.8. TOPOLOGICAL PHASE TRANSITION

So far we studied the phase transitions according to Landau’s paradigm, where the

symmetry of an order parameter is broken at the phase transition. These concepts can

be extended to include zero-temperature quantum phase transitions. However there are

other phase transitions that are not associated with broken symmetry and do not have an

identifiable order parameter. These phase transitions are driven by topological defects and

called topological phase transitions. Topological phase transitions can be accompanied by
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Figure 1.6. Schematic phase diagram of a dilute magnet. As dilution 𝑝 is increased,
critical temperature decreases. At zero temperature, phase transition occurs at critical

dilution 𝑝𝑐, called percolation threshold.

singularities in thermodynamic properties and diverging correlation length, and the concepts

of scaling relations, universality, critical exponents are still applicable near topological phase

transitions.

Early experiments on 2𝑑 Helium films provided evidence of a superfluid transition.

However, according to the Mermin-Wagner theorem, long-range ordered superfluidity is

prohibited in this system [4]. The Mermin-Wagner theorem states that, in dimension 𝑑 ≤ 2,

continuous symmetries cannot be spontaneously broken at finite temperatures. In 1972-73,

Berezinskii, Kosterlitz, and Thouless explained the superfluid transition in Helium films

using topological defects [5, 6].

In this section we will discuss the topological phase transition in the 2𝑑 classical XY

model. First we show that there exists a phase transition at finite temperature by comparing

the asymptotic behavior at high temperature and low temperature expansions of the partition
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function. The Hamiltonian of the 2d square lattice XY model reads,

𝐻 = −𝐽
∑︁
⟨𝑖 𝑗⟩

cos(𝜃𝑖 − 𝜃 𝑗 ), (1.49)

where we used the parametrization of the spins, S = (cos 𝜃, sin 𝜃). The partition function is

given by,

𝑍 =

∫ 2𝜋

0

∏
𝑖

𝑑𝜃𝑖

2𝜋
𝑒−𝛽𝐻 =

∫ 2𝜋

0

∏
𝑖

𝑑𝜃𝑖

2𝜋
𝑒𝐾

∑
⟨𝑖 𝑗 ⟩ cos(𝜃𝑖−𝜃 𝑗 ) , (1.50)

where, 𝐾 = 𝛽𝐽. At high temperatures, we can expand 𝑍 in powers of 𝐾 ,

𝑍 =

∫ 2𝜋

0

∏
𝑖

𝑑𝜃𝑖

2𝜋

∏
⟨𝑖 𝑗⟩

[1 + 𝐾 cos(𝜃𝑖 − 𝜃 𝑗 ) + O(𝐾2)] . (1.51)

Each term in the product can be considered as a bond between sites 𝑖 and 𝑗 . As∫ 2𝜋
0 𝑑𝜃1𝐾 cos(𝜃1 − 𝜃2) = 0, all the contributions coming from a single bond are zero. Fur-

ther, because
∫ 2𝜋

0 𝑑𝜃2𝐾 cos(𝜃1 − 𝜃2) cos(𝜃2 − 𝜃3) = 𝐾 cos(𝜃1 − 𝜃3)/2, only non-vanishing

contributions to the partition function arise from closed loops that encircle a single plaquette.

Now we can use the partition function to evaluate spin-spin correlations then read,

⟨S®𝑟 .S®𝑟 ′⟩ = ⟨cos(𝜃®𝑟 − 𝜃®𝑟 ′)⟩. (1.52)

First consider the case that the two sites are nearest neighbors. The only non-zero contri-

bution comes from the bond between two sites, i.e.
∫ 2𝜋

0 𝑑𝜃0𝐾 cos2(𝜃®𝑟 − 𝜃0) = 𝐾/2. See

Fig. 1.7. Therefore, the leading contribution to correlation function is from all the sites that

lie on the paths joining origin to ®𝑟,

⟨S®𝑟 .S®𝑟 ′⟩ =
(
𝐾

2

) |®𝑟−®𝑟 ′ |
∼ exp

(
− |®𝑟 − ®𝑟′|

𝜉

)
(1.53)

with correlation length 𝜉−1 = ln(2/𝐾). This exponential decay of correlation means the

high temperature phase is paramagnetic.
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r

r’

Figure 1.7. Bonds that contribute in evaluation of spin-spin correlation function in eq.
(1.52).

Conversely, at the zero temperature, the ground state configuration corresponds to

all spins aligned parallel to each other. The thermal fluctuations at very low temperatures

would cause small perturbation in the angles 𝜃. At large distances, we can treat these

perturbations in a continuum limit as long-wavelength excitations. Therefore,

−𝛽𝐻 = 𝐾
∑︁
⟨𝑖 𝑗⟩

S𝑖 .S 𝑗 =
𝐾

2

∑︁
⟨𝑖 𝑗⟩

[
(S𝑖 − S 𝑗 )2 − 2

]
(1.54)

−𝛽𝐻 =
𝐾

2

∫
𝑑2®𝑟 (∇𝜃)2 − 𝛽𝐸0. (1.55)

Ignoring the constant background energy,

𝑍 =

∫ ∞

−∞
𝐷𝜃 exp

(
𝐾

2

∫
𝑑2®𝑟 (∇𝜃)2

)
, (1.56)
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where limits of integration can be extended to infinity because angular fluctuations are

expected to be very small. Spin-spin correlation,

⟨S®𝑟 .S®𝑟 ′⟩ = ⟨𝑒𝑖[𝜃 ®𝑟−𝜃 ®𝑟′ ]⟩ = 𝑒− 1
2 ⟨(𝜃 ®𝑟−𝜃 ®𝑟′ )

2⟩ (1.57)

where second equality holds because 𝑍 is Gaussian. Evaluating the exponent in Fourier

basis, ⟨|𝜃 (𝑞) |2⟩ = 1
𝐾𝑞2 . Inverse Fourier transform gives us,

⟨(𝜃®𝑟 − 𝜃®𝑟 ′)2⟩ = 1
2𝜋𝐾

ln
(
|®𝑟 − ®𝑟′|
𝑎

)
. (1.58)

Therefore, spin-spin correlation,

⟨S®𝑟 .S®𝑟 ′⟩ =
(
|®𝑟 − ®𝑟′|
𝑎

)− 1
2𝜋𝐾

∼ |®𝑟 − ®𝑟′|−𝜂 . (1.59)

The spin-spin correlation goes to 0 as 𝑟 → ∞, i.e. there is no long-range order. However,

compared to exponential decay at high temperatures, this power law decay is much slower.

This distinction at the two asymptotic limits allows the possibility of phase transition at

finite temperature. The mechanism of the phase transition was explained by Berezinskii,

Kosterlitz and Thouless using vortex-antivortex pair unbinding. Lets discuss some features

of the vortices below.

In the long-wavelength approximation in eq. (1.56), the contribution from singular

spin configurations such as vortices was neglected. A vortex has the property that a closed

loop integral, ∮
𝑑®𝑟.∇𝜃 = 2𝜋𝑛⇒ ∇𝜃 = 𝑛

𝑟
ê𝑟 × ê𝑧, (1.60)
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Figure 1.8. A vortex with winding number 𝑛 = 1.

where 𝑛 is an integer, called the winding number, ê𝑟 , ê𝑧 are unit vectors in-plane and

perpendicular to the plane of spins respectively. See Fig. 1.8. The energy of a vortex of

winding number 𝑛, placed at the origin,

𝐸𝑛 = 𝐸
0
𝑛 (𝑎) +

𝐽

2

∫
(∇𝜃)2𝑑2𝑟 = 𝐸0

𝑛 (𝑎) +
𝐽

2

∫
𝑛2

𝑟2 𝑑
2𝑟 (1.61)

𝐸𝑛 = 𝐸
0
𝑛 (𝑎) + 𝜋𝐽𝑛2 ln

(
𝐿

𝑎

)
. (1.62)

𝐸0
𝑛 (𝑎) is energy of a core of size 𝑎, and 𝐿 is the linear size of the system. Therefore, energy

of a single vortex of winding number unity in an infinite system diverges. However, energy

of a pair of vortices with opposite winding numbers separated by distance 𝑟 ,

𝐸pair(𝑟) = 2𝜋𝐽𝑛2 ln
( 𝑟
𝑎

)
. (1.63)
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Thus, a bound vortex-antivortex pair costs finite energy. Kosterlitz and Thouless suggested

that bound pairs of vortices are present at low temperature, and as temperature increases

proliferation of unbound vortices drives the system to disordered phase. To understand this

mechanism, consider free energy change to add a vortex. A vortex of core size 𝑎 can be

placed at (𝐿/𝑎)2 locations, therefore entropy of a single vortex,

𝑆1 = 𝑘𝐵 ln
(
𝐿2

𝑎2

)
= 2𝑘𝐵 ln

(
𝐿

𝑎

)
. (1.64)

Then free energy,

𝐹1 = (𝜋𝐽 − 2𝑘𝐵𝑇) ln
(
𝐿

𝑎

)
. (1.65)

As already discussed, free energy cost to add a vortex at low temperature diverges as

𝐿 → ∞, but at temperatures above 𝑇𝑐, free energy is lowered by adding a vortex,

𝑇𝑐 =
𝜋𝐽

2𝑘𝑏
. (1.66)

This simple estimate provides a qualitative argument for the phase transition. Including

more vortices and interactions between them is necessary to understand the full picture.

1.9. OUTLINE OF THE DISSERTATION

In this dissertation, we will present results regarding phase transitions in three

closely related systems. In PAPER I, we investigate the behavior of diluted hexaferrites with

varying levels of dilution. We study the unusual phase diagram observed in experiments

on hexaferrite materials through a percolation scenario, using large-scale Monte Carlo

simulations. Next, in PAPER II, we examine the response of the two-dimensional XY

model to a finite twist in the boundary conditions. We explain the unexpected deviation

observed in the free energy difference between periodic and twisted boundary conditions.

These results are relevant in certain experimental contexts and for computational methods.
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Then, in PAPER III, we explore the phase diagram of the disordered quantum clock model

in one dimension. We characterize the critical behavior across all phase boundaries and

verify theoretical predictions in the strong disorder limit.

The summary and implications of this work are presented in the final section.
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PAPER

I. PHASE BOUNDARY NEAR A MAGNETIC PERCOLATION TRANSITION

Gaurav Khairnar, Cameron Lerch, Thomas Vojta
Department of Physics

Missouri University of Science and Technology
Rolla, Missouri 65409

Email: grktmk@mst.edu, vojtat@mst.edu2

ABSTRACT

Motivated by recent experimental observations [Phys. Rev. 96, 020407 (2017)] on

hexagonal ferrites, we revisit the phase diagrams of diluted magnets close to the lattice per-

colation threshold. We perform large-scale Monte Carlo simulations of XY and Heisenberg

models on both simple cubic lattices and lattices representing the crystal structure of the

hexagonal ferrites. Close to the percolation threshold 𝑝𝑐, we find that the magnetic ordering

temperature 𝑇𝑐 depends on the dilution 𝑝 via the power law 𝑇𝑐 ∼ |𝑝 − 𝑝𝑐 |𝜙 with exponent

𝜙 = 1.09, in agreement with classical percolation theory. However, this asymptotic critical

region is very narrow, |𝑝 − 𝑝𝑐 | ≲ 0.04. Outside of it, the shape of the phase boundary

is well described, over a wide range of dilutions, by a nonuniversal power law with an

exponent somewhat below unity. Nonetheless, the percolation scenario does not reproduce

the experimentally observed relation 𝑇𝑐 ∼ (𝑥𝑐 − 𝑥)2/3 in PbFe12−𝑥Ga𝑥O19. We discuss

the generality of our findings as well as implications for the physics of diluted hexagonal

ferrites.
2Published: The European Physical Journal B, 94, 43 (2021)
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1. INTRODUCTION

Disordered many-body systems feature three different types of fluctuations, viz.,

static random fluctuations due to the quenched disorder, thermal fluctuations, and quantum

fluctuations. Their interplay can greatly affect the properties of phase transitions, with

possible consequences ranging from a simple change of universality class [16] to exotic

infinite-randomness criticality [17, 18], classical [19] and quantum [20, 21] Griffiths sin-

gularities, as well as the destruction of the transition by smearing [22, 23, 24, 25]. Recent

reviews of some of these phenomena can be found in Refs. [14, 26, 27]. Randomly diluted

magnetic materials are a particularly interesting class of systems in which the above inter-

play is realized. Here, the disorder fluctuations correspond to the geometric fluctuations

of the underlying lattices which can undergo a geometric percolation transition between a

disconnected phase and a connected (percolating) phase [7].

Recently, the behavior of diluted magnets close to the percolation transition has

reattracted attention because of the unexpected shape of the phase boundary observed in

the diluted hexagonal ferrite (hexaferrite) PbFe12−𝑥Ga𝑥O19 [1]. Pure PbFe12O19 orders

ferrimagnetically at temperatures below about 720 K [28]. The ordering temperature 𝑇𝑐 can

be suppressed by randomly substituting nonmagnetic Ga ions for Fe ions in PbFe12−𝑥Ga𝑥O19.

It vanishes when 𝑥 reaches the critical value 𝑥𝑐 ≈ 8.6. This value is very close the

percolation threshold 𝑥𝑝 = 8.846 of the underlying lattice3, suggesting that the transition

at 𝑥𝑐 is of percolation type [1]. Remarkably, the phase boundary follows the power law

𝑇𝑐 (𝑥) = 𝑇𝑐 (0) (1 − 𝑥/𝑥𝑐)𝜙 with 𝜙 = 2/3 over the entire 𝑥-range from 0 to 𝑥𝑐. This disagrees

with the prediction from classical percolation theory [7, 29] which yields a crossover

exponent of 𝜙 > 1 for continuous symmetry magnets, at least for dilutions close to 𝑥𝑐.

In this paper, we therefore reinvestigate the phase boundary close to the percolation

transition of diluted classical planar and Heisenberg magnets by means of large-scale Monte

Carlo simulations. The purpose of the paper is twofold. First, we wish to test and verify
3The lattice in question is the lattice of exchange interactions between the Fe ions.
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the percolation theory predictions, focusing not only on the asymptotic critical behavior

but also on the width of the critical region and the preasymptotic properties. Second, we

wish to explore whether the classical percolation scenario can explain the experimental

observations in PbFe12−𝑥Ga𝑥O19 [1].

Our paper is organized as follows. In Sec. 2, we introduce the diluted XY and

Heisenberg models and discuss their qualitative behavior. Section 3 summarizes the pre-

dictions of percolation theory. Our Monte Carlo simulation method is described in Sec. 4.

Sections 5.1 and 5.2 report our results for model systems on cubic lattices and for systems

defined on the hexagonal ferrite lattice, respectively. We conclude in Sec. 6.

2. THE MODELS

Consistent with the dual purpose of studying the critical behavior of the phase

boundary close to a magnetic percolation transition and of addressing the experimental

observations in diluted hexaferrites [1], we consider two models, viz., (i) site-diluted clas-

sical XY and Heisenberg models on simple cubic lattices and (ii) a classical Heisenberg

Hamiltonian based on the hexaferrite crystal structure using realistic exchange interactions.

Comparing the results of these different models will also allow us to explore the universality

of the critical behavior.

2.1. SITE-DILUTED XY AND HEISENBERG MODELS ON CUBIC LATTICES

We consider a simple cubic lattice of 𝑁 = 𝐿3 sites. Each site is either occupied by a

vacancy or by a classical spin, i.e., an 𝑛-component unit vector S𝑖 (𝑛 = 2 for the XY model

and 𝑛 = 3 for the Heisenberg case). The Hamiltonian reads

𝐻 = −𝐽
∑︁
<𝑖, 𝑗>

𝜖𝑖𝜖 𝑗S𝑖 · S 𝑗 . (1)
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Here, the sum is over pairs of nearest-neighbor sites, and 𝐽 > 0 denotes the ferromagnetic

exchange interaction. (In the following, we set 𝐽 to unity for the cubic lattice simulations.)

The quenched independent random variables 𝜖𝑖 implement the site dilution. They take the

values 0 (vacancy) with probability 𝑝 and 1 (occupied site) with probability 1 − 𝑝. We

employ periodic boundary conditions. Magnetic long-range order can be characterized by

the order parameter, the total magnetization

m =
1
𝑁

∑︁
𝑖

S𝑖 . (2)

The qualitative behavior of this model as a function of temperature 𝑇 and dilution

𝑝 is well understood (see, e.g., Ref. [30] for an overview). For sufficiently small dilution,

the system orders magnetically below a critical temperature 𝑇𝑐 (𝑝). The critical temperature

decreases continuously with 𝑝 until it reaches zero at the percolation threshold 𝑝𝑐 of

the lattice. For dilutions beyond the percolation threshold, magnetic long-range order is

impossible because the system breaks down into finite noninteracting clusters. The point

𝑝 = 𝑝𝑐, 𝑇 = 0 is a multicritical point at which both the geometric fluctuations of the lattice

and the thermal fluctuations become long-ranged.

2.2. HEXAFERRITE HEISENBERG MODEL

PbFe12O19 crystallizes in the magnetoplumbite structure, as illustrated in Fig. 1. A

double unit cell contains 24 Fe3+ ions in five distinct sublattices; they are in the spin state

𝑆 = 5/2. Below a temperature of about 720𝐾 , the material orders ferrimagnetically, with

16 of the Fe spins pointing up and the remaining 8 Fe ions pointing down [28]. Note that the

high critical temperature and the high spin value suggest that a classical description should

provide a good approximation.



37

Figure 1. Double unit cell of PbFe12O19. 24 Fe3+ ions are located on five distinct
sublattices.

In PbFe12−𝑥Ga𝑥O19, the randomly substituted Ga ions, which replace the Fe ions,

act as quenched spinless impurities. To model this system, we start from the hexaferrite

crystal structure and randomly place either a vacancy (with probability 𝑝) or a classical

Heisenberg spin S𝑖 (with probability 1 − 𝑝) at each Fe site. The dilution 𝑝 is related to the

number 𝑥 of Ga ions in the unit cell by 𝑝 = 𝑥/12. The Hamiltonian reads

𝐻 = −
∑︁
𝑖, 𝑗

𝐽𝑖 𝑗𝜖𝑖𝜖 𝑗S𝑖S 𝑗 . (3)

The quenched random variables 𝜖𝑖 distinguish vacancies and spins, as before. The values

of the exchange interactions 𝐽𝑖 𝑗 stem from the density functional calculation in Ref. [31];

they are scaled by a common factor to approximately reproduce the critical temperature

𝑇𝑐 = 720𝐾 of the undiluted material. In most of our Monte Carlo simulations, we include

only the leading (strongest) interactions which are between the following sublattice pairs:
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2a-4f𝐼𝑉 , 2b-4f𝑉𝐼 , 12k-4f𝐼𝑉 , 12k-4f𝑉𝐼 . These interactions are non-frustrated and establish

the ferrimagnetic order. We also perform a few test calculations to explore the effects of

additional couplings which are significantly weaker but frustrate the ferrimagnetic order.

The qualitative features of the phase diagram of the model (3) are expected to be

similar to those discussed in the previous section. With increasing dilution 𝑝, the critical

temperature 𝑇𝑐 (𝑝) is continuously suppressed and reaches zero at the site percolation

threshold. The value of the percolation threshold of the lattice spanned by the leading

non-frustrated interactions between the Fe ions was determined in Ref. [1] by means of

Monte Carlo simulations. They yielded 𝑝𝑐 = 0.7372(5), corresponding to 𝑥𝑐 = 8.846(6)

Ga ions per unit cell. (The numbers in brackets show the error estimate of the last digit.)

3. PREDICTIONS OF PERCOLATION THEORY

In this section, we briefly summarize the predictions of classical percolation theory

for the shape of the phase boundary 𝑇𝑐 (𝑝) close to multicritical point 𝑝 = 𝑝𝑐, 𝑇 = 0

[7, 29, 32]. Close to this point, two length scales are at play, the percolation correlation

length, 𝜉𝑝 which characterizes the size of finite isolated clusters of lattice sites and the

magnetic thermal correlation length on the critical infinite percolating cluster at 𝑝𝑐 denoted

by 𝜉𝑇 . The percolation correlation length 𝜉𝑝 diverges as 𝜉𝑝 ∼ |𝑝 − 𝑝𝑐 |−𝜈𝑝 as the percolation

threshold is approached. The magnetic thermal correlation length behaves as 𝜉𝑇 ∼ 𝑇−𝜈𝑇 for

continuous-symmetry magnets described by the 𝑛-vector model with 𝑛 > 1.

To find the phase boundary, consider the magnetization near the critical point. It

fulfills the scaling form,

𝑚(𝑝 − 𝑝𝑐, 𝑇) = |𝑝 − 𝑝𝑐 |𝛽 𝑋
(
𝜉𝑇/𝜉𝑝

)
. (4)
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For 𝑝 < 𝑝𝑐, the magnetic phase transition occurs at a particular value 𝑥𝑐 of the argument

of the scaling function 𝑋 . At the magnetic transition, we therefore have 𝜉𝑇 = 𝑥𝑐𝜉𝑝. This

yields the power law relation

𝑇𝑐 (𝑝) ∼ |𝑝 − 𝑝𝑐 |𝜙 . (5)

The crossover exponent 𝜙 takes the value 𝜙 = 𝜈𝑝/𝜈𝑇 . (In contrast, 𝜉𝑇 diverges ex-

ponentially, 𝜉𝑇 ∼ (𝑒−2𝐽/𝑇 )−𝜈𝑇 , for Ising magnets, leading to a logarithmic dependence

𝑇𝑐 (𝑝) ∼ ln−1(1/|𝑝 − 𝑝𝑐 |).)

Using a renormalization group calculation, Coniglio [29] established the relation

𝜈𝑇 = 1/𝜁𝑅. Here, 𝜁𝑅 characterizes the resistance 𝑅 of a random resistor network on a

critical percolation cluster of linear size 𝐿 via 𝑅 ∼ 𝐿𝜁𝑅 .

The exponent 𝜁𝑅 can be related to the well-known conductivity critical exponent 𝑡

which describes how the conductivity 𝜎 of the resistor network depends on the distance

from the percolation threshold, 𝜎 ∼ |𝑝 − 𝑝𝑐 |𝑡 . To do so, consider a resistor network on a

percolating lattice close to 𝑝𝑐 but on the percolating side. Its behavior is critical for clusters

of size less than 𝜉𝑝 and Ohmic for sizes beyond 𝜉𝑝. For a 𝑑-dimensional system of linear

size 𝐿 ≫ 𝜉𝑝, we can employ Ohm’s law to combine blocks of size 𝜉𝑝, yielding

𝑅(𝐿) = 𝑅(𝜉𝑝)
(
𝐿

𝜉𝑝

) (
𝐿

𝜉𝑝

)−(𝑑−1)
∼ 𝜉

𝜁𝑅
𝑝 𝜉

𝑑−2
𝑝 𝐿2−𝑑 . (6)

The conductivity on the percolating side thus behaves as𝜎 ∼ 𝜉−(𝑑−2+𝜁𝑅)
𝑝 ∼ |𝑝−𝑝𝑐 |𝜈𝑝 (𝑑−2+𝜁𝑅) .

Thus, we obtain the hyperscaling relation, 𝑡 = (𝑑 − 2 + 𝜁𝑅)𝜈𝑝 or 𝜁𝑅 = 𝑡/𝜈𝑝 − 𝑑 + 2. Using

the numerical estimates 𝑡/𝜈𝑝 = 2.28(2) and 𝜈𝑝 = 0.876(2) [33, 34] for three-dimensional

systems yields 𝜁𝑅 = 1.28(2), predicting a crossover exponent of 𝜙 = 𝜈𝑝/𝜈𝑇 = 𝜈𝑝𝜁𝑅 =

1.12(2). 4

4The crossover exponent has also been computed within an expansion in powers of 𝜖 = 6 − 𝑑 yielding
𝜙 = 1 + 𝜖/42 to first order in 𝜖 [35, 36]. The resulting value, 𝜙 = 1.071, is surprisingly close to the best
numerical estimate 𝜙 = 1.12(2).
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4. NUMERICAL SIMULATIONS

4.1. MONTE CARLO METHOD

To find the critical temperature for a given dilution of the system, we perform

large-scale Monte Carlo (MC) simulations. These simulations employ the Wolff [37] and

Metropolis [38] algorithms. Specifically, a full MC sweep consists of a Wolff sweep

followed by a Metropolis sweep. The Wolff algorithm is a cluster-flip algorithm which is

beneficial in reducing critical slowing down of the system near criticality. The Metropolis

algorithm is a single spin-flip algorithm. It is required to achieve equilibration of small

isolated clusters of lattice sites which might form as a result of dilution.

For the cubic lattice calculations, we consider system sizes ranging from 𝐿3 = 103

to 𝐿3 = 1123. We have simulated 4000 − 40000 independent disorder configurations for

each size. For the hexaferrite lattice, we simulate systems consisting of 103 to 403 double

unit cells (each double unit cell contains 24 Fe sites) using 100 − 300 independent disorder

configurations for each size. All physical quantities of interest, such as energy, magnetiza-

tion, correlation length, etc. are averaged over the disorder configurations. Statistical errors

are obtained from the variations of the results between the configurations.

Measurements of observables must be performed after the system reaches thermal

equilibrium. We determine the number of Monte Carlo sweeps required for the system to

equilibrate by comparing the results of runs with hot starts (for which the spins initially

point in random directions) and with cold starts (for which all spins are initially aligned).

An example of such a test for a cubic lattice XY system close to multicritical point is

shown in Fig. 2. The energy and order parameter attain their respective equilibrium values

after roughly 50 Monte Carlo sweeps. Similar numerical checks were performed for other

parameter values as well as for the cases of Heisenberg spins on cubic and hexaferrite

lattices. Based on these tests, we have chosen 150 equilibration sweeps (using a hot start)

and 500 measurement sweeps per disorder configuration for the cubic lattice simulations.
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Figure 2. Equilibration of the energy per site 𝐸 and the magnetization 𝑚 for a cubic lattice
XY model of size 𝐿 = 56, dilution 𝑝 = 0.66 , and temperature 𝑇 = 0.156 averaged over 20

disorder configurations. The comparison of hot and cold starts shows that the system
equilibrates after roughly 50 Monte Carlo sweeps despite being close to the multicritical

point.

For the hexaferrite lattice, we perform 1000 equilibration sweeps and 2000 measurement

sweeps (using a hot start). Note that the combination of relatively short Monte Carlo runs

and a large number of disorder configurations leads to an overall reduction of statistical

error [39, 40, 41].

4.2. DATA ANALYSIS

We employ the Binder cumulant [42] to precisely estimate the critical temperature

𝑇𝑐. It is defined as

𝑔 =

[
1 − ⟨|m|4⟩

3⟨|m|2⟩2

]
𝑑𝑖𝑠

(7)
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where ⟨...⟩ denotes the thermodynamic (Monte Carlo) average and [...]𝑑𝑖𝑠 denotes the

disorder average. The Binder cumulant 𝑔 is a dimensionless quantity, it therefore fulfills

the finite-size scaling form

𝑔(𝑡, 𝐿, 𝑢) = 𝑔(𝑡𝜆−1/𝜈, 𝐿𝜆, 𝑢𝜆𝛿) . (8)

Here, 𝜆 is an arbitrary scale factor, 𝑡 = (𝑇 − 𝑇𝑐)/𝑇𝑐 denotes the reduced temperature, and

𝜈 is the correlation length exponent of the (magnetic) finite-temperature phase transition.

We have included the irrelevant variable 𝑢 characterized by the exponent 𝛿 > 0 to describe

the corrections from the leading scaling behavior observed in our data. Setting the scale

factor 𝜆 = 𝐿−1, we obtain 𝑔(𝑡, 𝐿, 𝑢) = 𝐹 (𝑡𝐿1/𝜈, 𝑢𝐿−𝛿) where 𝐹 is a dimensionless scaling

function. Expanding 𝐹 in its second argument yields

𝑔(𝑡, 𝐿, 𝑢) = Φ(𝑡𝐿 1
𝜈 ) + 𝑢𝐿−𝛿Φ𝑢 (𝑡𝐿

1
𝜈 ) . (9)

In the absence of corrections to scaling (𝑢 = 0), the Binder cumulants at 𝑡 = 0 corresponding

to different system sizes have the universal valueΦ(0), i.e., the critical temperature is marked

by a crossing of all Binder cumulant curves. If corrections to scaling cannot be neglected

(𝑢 ≠ 0), this is not the case (see, e.g., Ref. [43]) because 𝑔(0, 𝐿, 𝑢) is not independent of 𝐿

but takes the value 𝑔(0, 𝐿, 𝑢) = Φ(0) + 𝑢𝐿−𝛿Φ𝑢 (0). Instead, the crossing point shifts with

𝐿 and approaches 𝑡 = 0 as 𝐿 → ∞. The functional form of this shift can be worked out

explicitly by expanding the scaling functions Φ and Φ𝑢,

𝑔(𝑡, 𝐿, 𝑢) = Φ(0) + 𝑡𝐿 1
𝜈Φ′(0) + 𝑢𝐿−𝛿Φ𝑢 (0) . (10)
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Using this expression to evaluate the crossing temperature 𝑇∗(𝐿) between the Binder cu-

mulant curves for sizes 𝐿 and 𝑐𝐿 (where 𝑐 is a constant) yields

𝑇∗(𝐿) = 𝑇𝑐 + 𝑏𝐿−𝜔 with 𝜔 = 𝛿 + 1
𝜈

(11)

where 𝑏 ∼ 𝑢 is a non-universal amplitude.

To determine the crossing temperature, we fit the 𝑔 vs 𝑇 data sets corresponding

to different system sizes with separate quartic polynomials.(Quartic polynomials provide

reasonable fits within the temperature range of interest while avoiding spurious oscillations.)

The intersection point of these polynomials yields the crossing temperature 𝑇∗. To estimate

the errors of the crossing temperature we use an ensemble method. For each 𝑔(𝑇) curve,

we create an ensemble of artificial data sets 𝑔𝑎 (𝑇) by adding noise to the data

𝑔𝑎 (𝑇) = 𝑔(𝑇) + Δ𝑔(𝑇) 𝑟 . (12)

Here, 𝑟 is a random number chosen from a normal distribution of zero mean and unit

variance, and Δ𝑔(𝑇) is the statistical error of the Monte Carlo data for 𝑔(𝑇). Note that

we use the same random number 𝑟 for the entire 𝑔(𝑇) curve, leading to an upward or

downward shift of the curve. This stems from the fact that the statistical error Δ𝑔(𝑇) is

dominated by the disorder noise while the Monte Carlo noise is much weaker. This implies

that the deviations at different temperatures of the Binder cumulant from the true average

are correlated. Repeating the crossing analysis with these ensembles of curves, we get

ensembles of crossing temperatures. Their mean and standard deviation yield 𝑇∗ and the

associated error Δ𝑇∗, respectively.
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5. RESULTS

In this section we report the results of our simulations for cubic and hexaferrite

lattices occupied by XY or Heisenberg spins.

5.1. CUBIC LATTICES

We investigate the behavior of both XY and Heisenberg models on cubic lattices.

To check the validity of our simulations, we first consider clean (undiluted) lattices. We

find critical temperatures of 𝑇𝑐 = 2.2017(1) and 𝑇𝑐 = 1.44298(2) for XY and Heisenberg

spins, respectively. They agree well with previously known numerical results [44, 45].

We now turn to diluted systems, starting with the XY case. For reference, the

site percolation threshold of the simple cubic lattice is at the vacancy probability 𝑝𝑐 =

0.6883923(2) [34]. For low dilutions (𝑝 < 0.64), the Binder cumulant vs. temperature

curves for all simulated system sizes cross through exactly the same point within their

statistical errors, implying that corrections to the leading finite-size scaling behavior are

not important. Therefore, we determine 𝑇𝑐 from the crossing of the 𝑔(𝑇) curves of the two

largest system sizes, 𝐿3 = 803 and 𝐿3 = 1123. The ensemble method is applied to find the

error of 𝑇𝑐. Fig. 3 shows an example of this situation for dilution 𝑝 = 0.1.

For higher dilutions (𝑝 ≥ 0.64) in the vicinity of the percolation threshold 𝑝𝑐, the

crossing of the Binder cumulant vs. temperature curves is less sharp. Specifically, the

crossing temperature 𝑇∗(𝐿) of the curves for linear system sizes 𝐿 and
√

2𝐿 shifts visibly

towards higher temperatures as the system sizes are increased. An example (for 𝑝 = 0.65) is

demonstrated in Fig. 4. As shown in the previous section, this shift is caused by corrections

to the leading finite-size scaling behavior. According to Eq. (11), it can be modeled as

𝑇∗(𝐿) = 𝑇𝑐 + 𝑏𝐿−𝜔. To find the asymptotic (infinite system size) value of 𝑇𝑐, we thus fit the

crossing temperature 𝑇∗(𝐿) to Eq. (11). As 𝜔 is expected to be universal, i.e., to take the

same value for all dilutions near 𝑝𝑐, we perform a combined fit for all dilutions 𝑝 ≥ 0.64
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Figure 3. Binder cumulant 𝑔 vs temperature 𝑇 for the cubic lattice XY model with dilution
𝑝 = 0.10. The statistical errors arising from the Monte Carlo simulation are smaller than
the symbol size. The inset show the intersection region of the curves more closely. All

curves cross at the same point within their statistical errors.

and treat 𝜔 as a fitting parameter. This combined fit produces 𝜔 = 1.5 ± 0.4. An example

of the resulting extrapolation is presented in Fig. 5 for 𝑝 = 0.65. The figure shows that the

finite-size shifts of the crossing temperature are not very strong. This is further confirmed in

Fig. 6 which presents an overview of the fits for all dilutions from 𝑝 = 0.64 to 𝑝 = 0.6825.

The resulting phase boundary 𝑇𝑐 (𝑝) of the site-diluted XY model on a cubic lattice

is shown in Fig. 7. The overview given in the inset demonstrates that 𝑇𝑐 (𝑝) is indeed

continuously suppressed with increasing 𝑝 and approaches zero as 𝑝 → 𝑝𝑐. To analyze the

functional form of 𝑇𝑐 (𝑝) close to 𝑝𝑐, the main panel of Fig. 7 shows a log-log plot of 𝑇𝑐

vs. |𝑝 − 𝑝𝑐 |. We observe that the phase boundary follows two different power laws, close
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Figure 4. Binder cumulant 𝑔 vs temperature 𝑇 for the XY model on a cubic lattice for
dilution 𝑝 = 0.65, i.e. close to 𝑝𝑐. The curves do not all cross at the same temperature.

Instead, the crossing progressively shifts as 𝐿 increases. The statistical errors arising from
the Monte Carlo simulation are smaller than the symbol size.

to the percolation threshold 𝑝𝑐 and further away from 𝑝𝑐. The asymptotic value of 𝜙 is

determined from a fit of the data closest to 𝑝𝑐 (viz. 𝑝 between 0.678 to 0.6825), yielding

a crossover exponent of 𝜙 = 1.09(2). Its error estimate is a combination of the statistical

error from the fit and a systematic error estimated from the robustness of the value against

changes of the fit interval. The asymptotic value of 𝜙 agrees reasonably well with the

prediction of percolation theory. The asymptotic power law describes the data for dilutions

above about 𝑝 = 0.65. The asymptotic critical region thus ranges from about 𝑝 = 0.65 to

𝑝𝑐 = 0.6883923.
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Figure 5. Extrapolation to infinite system size of the crossing temperature 𝑇∗ of the Binder
cumulant curves for system sizes 𝐿 and

√
2𝐿 using 𝜔 = 1.5. The dilution is 𝑝 = 0.65. A fit

to Eq. (11) gives 𝑇𝑐 = 0.2064(4). The error bars of 𝑇∗ have been determined using the
ensemble method described in Sec. 4.2.

The preasymptotic behavior of 𝑇𝑐 (𝑝) for 𝑝 between 𝑝 = 0 to 𝑝 = 0.64 also follows

a power law in good approximation. However, the exponent is significantly below unity,

𝜙 = 0.80(1).

We proceed in the same manner for the Heisenberg model on the cubic lattice.

Starting from the clean case, we gradually increase dilution and find 𝑇𝑐 (𝑝). In the case of

Heisenberg spins, we find that the corrections to finite-size scaling are weaker than in the

XY case. Even in the vicinity of 𝑝𝑐, all Binder cumulant curves intersect in a single point

within their statistical errors. As an example, the 𝑔 vs 𝑇 data for 𝑝 = 0.65 are shown in Fig.

8. The critical temperatures 𝑇𝑐 (𝑝) and its error are therefore determined from the Binder

cumulant crossing for system sizes 𝐿3 = 803 and 𝐿3 = 1123, the largest systems simulated.
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Figure 6. Overview of the extrapolations of the crossing temperatures 𝑇∗ for several
dilutions near 𝑝𝑐 using 𝜔 = 1.5. The error bars Δ𝑇∗ are smaller than the symbols.

The phase boundary of the site-diluted Heisenberg model on a cubic lattice is

constructed from these data and shown in Fig. 9. Similar to the XY case, we observe

two separate power law exponents governing the phase boundary. The dilutions 𝑝 ≳ 0.65

constitute the asymptotic critical region with crossover exponent 𝜙 = 1.08(2), in agreement

with the percolation theory prediction. The nonuniversal preasymptotic crossover exponent

obtained for dilutions 𝑝 ≲ 0.62 is again smaller than unity, 𝜙 = 0.86(1), but somewhat

larger than in the XY case.
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Figure 7. Phase boundary of the site-diluted XY model on a cubic lattice. Main panel:
Log-log plot of 𝑇𝑐 vs. |𝑝 − 𝑝𝑐 |. The straight lines are power-law fits, 𝑇𝑐 ∼ |𝑝 − 𝑝𝑐 |𝜙. They

are shown as solid lines within the fit range. The dotted and dash-dotted lines are
extrapolations. For details see text. Inset: Overview presented as linear plot of 𝑇𝑐 vs. 𝑝.

All error bars of the data points are smaller than the symbol size.

5.2. HEXAGONAL FERRITE LATTICE

Whereas the asymptotic critical behavior of the phase boundary close to the per-

colation threshold is expected to be universal, its behavior outside the asymptotic critical

region does not have to be universal. For a better quantitative understanding of the magnetic

phase boundary of the diluted hexaferrites, we therefore also perform simulations of the

Heisenberg model (3) using the hexaferrite crystal structure and realistic exchange interac-
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Figure 8. Binder cumulant 𝑔 vs temperature 𝑇 for dilution 𝑝 = 0.65 on cubic lattice and
Heisenberg spins. All curves cross at the same temperature. Error bars are smaller than

the symbol size.

tions. In the calculations, we focus on the leading non-frustrated interactions, as outlined

in Sec. 2.2. The site percolation threshold for the lattice spanned by these interactions is

𝑝𝑐 = 0.7372(5) [1].

As before, the critical temperature 𝑇𝑐 for a given dilution is determined from the

Binder cumulant crossings. Corrections to the finite-size scaling were found to be negligible

within the statistical errors. Thus, we used the Binder cumulant crossing of the two largest

system sizes (283 and 403 double unit cells) to find 𝑇𝑐. The resulting phase boundary is

shown in Fig. 10. The behavior of this phase boundary is very similar to the cubic lattice

results. High dilutions, 𝑝 ≳ 0.68, fall into the asymptotic critical region with a crossover

exponent of 𝜙 = 1.12(3), in excellent agreement with the percolation theory predictions.
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Figure 9. Phase boundary of the site-diluted Heisenberg model on a cubic lattice. Main
panel: Log-log plot of 𝑇𝑐 vs. |𝑝 − 𝑝𝑐 |. The straight lines are power-law fits, 𝑇𝑐 ∼ |𝑝 − 𝑝𝑐 |𝜙.

They are shown as solid lines within the fit range. The dotted and dash-dotted lines are
extrapolations. For details see text. Inset: Overview presented as linear plot of 𝑇𝑐 vs. 𝑝.

All error bars of the data points are smaller than the symbol sizes.

This also confirms the universality of the asymptotic crossover exponent. The preasymptotic

exponent 𝜙 = 0.88(2) that governs the behavior for dilutions below about 0.65 is smaller

than unity and takes roughly the same value as for the Heisenberg model on the cubic lattice.

Our numerical results disagree with the experimentally observed 2/3 power law,

𝑇𝑐 (𝑥) = 𝑇𝑐 (0) (1 − 𝑥/𝑥𝑐)2/3. In the simulations, the transition temperature 𝑇𝑐 is suppressed

more rapidly with 𝑥 than in the experimental data (see Fig. 11). To explore possible

reasons for this discrepancy, we also perform test simulations that include additional weaker

exchange interactions [31] that frustrate the ferrimagnetic order. The results of these
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Figure 10. Phase boundary for the Heisenberg model on a hexagonal ferrite lattice. The
main panel shows the log-log plot of 𝑇𝑐 vs. |𝑝 − 𝑝𝑐 |. The statistical errors of the data

(determined by the ensemble method) are smaller than the symbol size. The straight lines
are fits to 𝑇𝑐 ∼ |𝑝 − 𝑝𝑐 |𝜙. They are shown as solid lines within the fit range. The dotted

and dash-dotted lines are extrapolations. For details see text. The inset shows a linear plot
the complete phase boundary 𝑇𝑐 (𝑝).

simulations, which are included in Fig. 11, show that these weaker frustrating interactions

have little effect at low dilutions. At higher dilutions, when the ferrimagnetic order is

already weakened, the frustrating interactions further suppress the transition temperature.

They thus further increase the discrepancy between the experimental data and the Monte

Carlo results.
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Figure 11. Comparison between the numerically determined phase boundary 𝑇𝑐 (𝑥) and
the experimental data for PbFe12−𝑥Ga𝑥O19 [1]. The tuning parameter 𝑥 is related to the

dilution by 𝑥/12 = 𝑝. The Monte Carlo simulations show a more rapid suppression of 𝑇𝑐
with 𝑥. Including additional weak frustrated interactions increases the discrepancy.

6. CONCLUSION

To summarize, motivated by recent experimental observations on hexagonal ferrites,

we have studied classical site-diluted XY and Heisenberg models by means of large-scale

Monte Carlo simulations, focusing on the shape of the magnetic phase boundary. We have

obtained two main results.

First, for high dilutions close to the lattice percolation threshold, the critical tem-

perature depends on the dilution via the power law 𝑇𝑐 ∼ |𝑝 − 𝑝𝑐 |𝜙 in all studied systems.

In this asymptotic region, we have found the values 𝜙 = 1.09(2) and 1.08(2) for XY and

Heisenberg spins on cubic lattices, respectively. For the Heisenberg model on the hexa-
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ferrite lattice, 𝜙 = 1.12(3). These values agree with each other and with the prediction

𝜙 = 1.12(2) of classical percolation theory. The crossover exponent 𝜙 thus appears to be

super-universal, i.e., it takes the same value not just for different lattices but also for XY

and Heisenberg symmetry.

Interestingly, the asymptotic critical region of the percolation transition is very

narrow, as the asymptotic power-laws only hold in the range |𝑝 − 𝑝𝑐 | ≲ 0.04. At lower

dilutions, the phase boundary still follows a power law in |𝑝 − 𝑝𝑐 |, but with an exponent

that appears to be non-universal and below unity (in the range between 0.8 and 0.9).

Our second main result concerns the origin of the 2/3 power law, 𝑇𝑐 (𝑥) = 𝑇𝑐 (0) (1−

𝑥/𝑥𝑐)2/3, that was experimentally observed in PbFe12−𝑥Ga𝑥O19 over the entire concentration

range between 0 and close to the percolation threshold [1]. Neither the asymptotic nor the

preasymptotic power laws identified in the simulations match the experimental result. In

fact, in all simulations, the critical temperature is suppressed more rapidly with increasing

dilution than in the experiment. The observed shape of the magnetic phase boundary in

PbFe12−𝑥Ga𝑥O19 thus remains unexplained.

Potential reasons for the unusual behavior may include the interplay between mag-

netism and ferroelectricity in these materials [46] or the presence of quantum fluctuations

(arising from the frustrated magnetic interactions mentioned above), even though it is hard

to imagine that these stay relevant at temperatures as high as 720 K. Another possible ex-

planation could be a statistically unequal occupation of the different iron sites in the unit

cell by Ga ions. Exploring these possibilities remains a task for the future. Disentangling

these effects may also require additional experiments introducing further tuning parameters

such as pressure or magnetic field in addition to chemical composition.
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ABSTRACT

We study the response of a two-dimensional classical XY model to a finite (non-

infinitesimal) twist of the boundary conditions. We use Monte Carlo simulations to evaluate

the free energy difference between periodic and twisted-periodic boundary conditions and

find deviations from the expected quadratic dependence on the twist angle. Consequently,

the helicity modulus (spin-stiffness) shows a non-trivial dependence on the twist angle.

We show that the deviation from the expected behavior arises because of the mixing of

states with opposite chirality which leads to an additional entropy contribution in the quasi-

long-range ordered phase. We give an improved prescription for the numerical evaluation

of the helicity modulus for a finite twist, and we discuss the spontaneous breaking of the

chiral symmetry for the anti-periodic boundary conditions. We also discuss applications

to discrete spin systems and some experimental scenarios where boundary conditions with

finite twist are necessary.

1. INTRODUCTION

The study of magnetic materials with the help of spin models such as the Ising or

Heisenberg models has resulted in tremendous progress in condensed matter physics. For

clean systems with short-range interactions, surface energies are negligible, and the choice

of boundary conditions does not affect the thermodynamic bulk behavior. On the other
5Published: Physical Review E 111, 024114 (2025)
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hand, in disordered systems such as spin glasses, effects of various boundary conditions

have been a topic of active interest [47, 48, 49]. In the presence of long-range interactions

in an Ising spin system, different choices of boundary condition lead to seemingly different

thermodynamic behaviors. By choosing artificial coupling-dependent boundary condition,

an uncountable number of exotic spin states of the ground state can be generated at any

temperature, whereas free boundary conditions, which are considered physical, do not

generate the same effect [50]. In XY or Heisenberg spin glasses, small rotations at the

boundary are expected to yield non-smooth changes in the ground state [51]. In these

systems, different boundary conditions are advantageous for revealing the numerous phases

and their physical properties [52, 53, 54].

Even in system in which the boundary conditions do not affect the bulk behavior, they

can have interesting and observable consequences. For example, thermodynamic Casimir

forces [55], which arise due to the confinement of critical order parameter fluctuations, were

found to be affected by the boundary conditions [56, 57, 58, 59, 60] (for a recent review of

exact results see Ref. [61]). An analogous force, the Helmholtz force, arises in the canonical

ensemble and also shows a strong dependence on the boundary conditions [62]. Moreover,

the response of a system to a change in boundary conditions can be employed as a tool to

measure (bulk) equilibrium properties.

In this paper, we reconsider the seemingly simple but surprisingly complex effects of

a finite (non-infinitesimal) twist of the boundary conditions on a ferromagnetic XY system.

Brown and Ciftan [45] suggested, in the context of the three-dimensional Heisenberg

model, that the mixing of states with differing chirality plays an important role and affects

the observed helicity modulus. However, a quantitative understanding of this effect and

its origins has not been achieved yet. We therefore study this question in detail for the

two-dimensional classical XY model by means of large-scale Monte Carlo simulations.
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We find that the free energy cost of a non-infinitesimal twist in the boundary

condition in the quasi long-range ordered (QLRO) low-temperature phase deviates from the

expected quadratic dependence on the twist angle. Mixing of states with opposite chirality

provides an extra entropy contribution which takes the value ln(2) (in units in which 𝑘𝐵 = 1)

for a 𝜋-twist. Beyond their intrinsic interest, our results potentially apply to experiments

aimed at detecting the Berezinskii–Kosterlitz–Thouless (BKT) transition [5, 6]. They are

also important for systems with discrete 𝑍 (𝑁) (clock) order parameter symmetry where any

twist in the boundary conditions is necessarily non-infinitesimal. In addition, our findings

enable novel numerical algorithms for computing the helicity modulus in simulations with

a finite twist.

Our paper is organized as follows. In section 2, we introduce the XY Hamiltonian

under boundary conditions with an arbitrary twist, and we define the helicity modulus.

Section 3 contains the details of the numerical simulations. In section 4, we present our

results for the dependence of the free energy on the twist angle and discuss the resulting

helicity modulus. We also analyze the spontaneous breaking of the chiral symmetry that

occurs for antiperiodic boundary conditions below the BKT transition. We conclude in

section 5.

2. THE MODEL

We are interested in the classical XY model, a system of planar spins described by

the Hamiltonian

𝐻 = −𝐽
∑︁
<𝑖 𝑗>

S𝑖 · S 𝑗 = −𝐽
∑︁
<𝑖 𝑗>

cos(𝜙𝑖 − 𝜙 𝑗 ) . (1)

Here, 𝐽 > 0 denotes the ferromagnetic exchange interaction (which will be set to unity in

the simulations), the sum is over pairs of nearest neighbors on a 𝑑-dimensional hypercubic

lattice, and S = (𝑆𝑥 , 𝑆𝑦) is a two-component unit vector. Equivalently, the XY spins can

be represented by their phases 𝜙, defined via 𝑆𝑥 = cos 𝜙, 𝑆𝑦 = sin 𝜙. Twisted boundary
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conditions can be implemented by fixing the spins at two opposite boundaries at specific

orientations (phases) with a fixed angle Θ between them. Alternatively, we consider the

Hamiltonian (1) with periodic boundary conditions and modify the interactions across one

of the boundaries to introduce the twist. This is achieved by replacing the interaction terms

across the chosen boundary by −𝐽 cos(𝜙𝑖 − 𝜙 𝑗 − Θ). We call these boundary conditions

twisted-periodic, and the usual periodic boundary conditions are recovered for Θ = 0.

The phase diagram of the classical XY model is well-understood. Long-range order

is impossible in one and two dimensions at any nonzero temperature due to the Mermin-

Wagner theorem [63]. In three and higher dimensions, there is a phase transition between

a paramagnetic high-temperature phase and a ferromagnetic low-temperature phase. The

two-dimensional XY model is special because the system undergoes a BKT phase transition

into a quasi long-range ordered low-temperature phase.

In a long-range ordered or quasi long-range ordered phase, a twist in the boundary

conditions increases the system’s free energy. The system can lower its free energy by

distributing the total twist (angular difference) Θ over the entire sample, i.e., by gradually

changing the average orientation of the spins in the bulk. For a system of linear size 𝐿, the

lowest free energy is expected when the average phase changes byΘ/𝐿 between neighboring

sites (in the direction the twist is applied). For large 𝐿, this local phase change is small,

which suggests that the free energy can be expanded in powers of Θ/𝐿. As the free energy

difference Δ𝐹 between the twisted and untwisted systems must be an even function of Θ,

the expansion is expected to take the form

Δ𝐹 = 𝐹Θ − 𝐹0 =
𝜌𝑠

2

(
Θ

𝐿

)2
𝐿𝑑 (2)
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to quadratic order in Θ/𝐿. This relation can be understood as a definition of the helicity

modulus (or spin stiffness) 𝜌𝑠,

𝜌𝑠 (Θ) =
2Δ𝐹
Θ2 𝐿2−𝑑 . (3)

This definition still depends on the value of the imposed twist angle Θ. Some papers in the

literature including the seminal work by Fisher, Barber, and Jasnow [64] define the helicity

modulus via a twist angle of 𝜋, i.e., via the free energy difference between periodic and

antiperiodic boundary conditions (in analogy with the study of interfacial energies in Ising

models). Other authors define the helicity modulus via the response to an infinitesimal twist

(in the spirit of linear response theory),

𝜌𝑠0 = 𝜌𝑠 (0) =
(
𝜕2𝐹

𝜕Θ2

)
Θ=0

𝐿2−𝑑 . (4)

It has generally been assumed that the two definitions lead to the same stiffness values

because the local, layer-to-layer twist Θ/𝐿 is small in either case (in the thermodynamic

limit), justifying the expansion (2) of the free energy [65, 66]. However, we will see that

this is not the case, at least not in two space dimensions.

The definition (4) has the advantage that the second derivative of the free energy can

be expressed in terms of appropriate correlation functions of the untwisted system. This

leads to the formula [67, 68]

(
𝜕2𝐹
𝜕Θ2

)
Θ=0

= 1
𝐿2

∑
<𝑖 𝑗> 𝐽

〈
cos(𝜙𝑖 − 𝜙 𝑗 )

〉
(𝑥𝑖 − 𝑥 𝑗 )2

− 𝛽

𝐿2

〈{∑
<𝑖 𝑗> 𝐽 sin(𝜙𝑖 − 𝜙 𝑗 ) (𝑥𝑖 − 𝑥 𝑗 )

}2
〉

(5)
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where 𝑥𝑖 is the coordinate of site 𝑖 in the twisted direction, and ⟨...⟩ denotes the thermo-

dynamic average evaluated at Θ = 0. For a derivation of Eq. (5), see Appendix 5. This

formula allows the evaluation of the helicity modulus without actually having to apply

twisted boundary conditions.

As the paramagnetic phase is insensitive to the boundary conditions, the free energy

difference decays exponentially with system size, Δ𝐹 ∼ 𝑒−𝐿/𝜉 , where 𝜉 is the correlation

length. This implies 𝜌𝑠 = 0 in the paramagnetic phase in the thermodynamic limit. In

contrast, Δ𝐹 is expected to scale as 𝐿𝑑−2 in an ordered or quasi long-range ordered phase,

and the helicity modulus is finite. In two dimensions, 𝜌𝑠 is known to have an universal

jump at the BKT phase transition. For 𝑑 > 2, 𝜌𝑠 vanishes continuously at 𝑇𝑐, governed

by the critical behavior of the phase transition. In the rest of the paper, we focus on two

dimensions, but we will comment on higher dimensions in the concluding section.

3. NUMERICAL SIMULATIONS

We perform large-scale Monte Carlo simulations to evaluate the free energy differ-

ence between systems with periodic and twisted-periodic boundary conditions. The free

energy cannot be measured directly in a standard Monte Carlo simulation. Instead, it can be

evaluated explicitly by integrating the internal energy𝑈 = ⟨𝐻⟩ over the inverse temperature

𝛽 = 1/𝑇 ,

𝐹 (𝑇) = 𝐹 (𝑇0) + 𝑇
∫ 𝛽

𝛽0

𝑑𝛽′𝑈 (𝛽′) . (6)

We choose the starting temperature𝑇0 sufficiently high (well above the BKT transition) such

that the free energies of the twisted and untwisted systems agree with each other within

the statistical errors. This ensures that 𝐹 (𝑇0) drops out of the free energy difference (2).

We note that there are alternative approaches that allow one to directly measure the free

energy difference between different boundary conditions in a simulation. This is achieved
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by including appropriate boundary terms as dynamical variables in the Monte Carlo scheme

(see, e.g., Refs. [69, 70]). The challenge in these approaches is to ensure a sufficiently rapid

relaxation of the boundary variables, especially in the absence of cluster algorithms.

Our simulations employ both the single spin-flip Metropolis algorithm [71, 72] and

the Wolff cluster-flip algorithm [37]. For systems with periodic boundary conditions, the

efficient Wolff algorithm greatly reduces critical slowing down. Thus, a full MC sweep

consists of one Metropolis sweep followed by one Wolff sweep for the case of periodic

boundary conditions. However, for twisted-periodic boundary conditions with twist angle

0 < Θ < 𝜋, the Wolff algorithm cannot be employed. This stems from the fact that the angle

between two spins of a Wolff cluster is not preserved (but rather changes sign) when the

cluster is flipped. Consequently, the cluster flip changes the energy of a twisted bond inside

the cluster, invalidating the algorithm. In the case of twisted-periodic boundary conditions

with 0 < Θ < 𝜋, we therefore only employ Metropolis sweeps. For a twist angle of exactly

𝜋, the twisted bonds effectively become antiferromagnetic as cos(Δ𝜙 − 𝜋) = − cos(Δ𝜙).

The energy of an antiferromagnetic bond is invariant under a sign change of Δ𝜙, and the

Wolff algorithm can be used.

To facilitate the numerical integration (6) for the free energy, we initiate the simula-

tions at the highest temperature 𝑇0 (using a “hot” start, i.e., all spins are randomly oriented

at the beginning of the simulation). The temperature is then reduced in small steps 𝑑𝑇

until the desired final temperature is reached. Most production simulations started from

𝑇0 = 30, much higher than the BKT transition temperature of 𝑇𝑐 = 0.89290(5) [73]. The

temperature step 𝑑𝑇 is gradually decreased from 𝑑𝑇 = 0.5 at 𝑇0 to 𝑑𝑇 = 0.02 in the tran-

sition region and below. To check how sensitive the free energy difference Δ𝐹 is to these

parameters, we performed tests with𝑇0 as high as 90 and 𝑑𝑇 as low as 0.01. The free energy

differences resulting from these test calculations agreed with the production results within

their statistical errors.
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For periodic boundary conditions, we perform up to 2000 full equilibration sweeps

(each consisting of a Metropolis sweep followed by a Wolff sweep) and up to 8000 full

measurement sweeps at each temperature step. For twisted-periodic boundary conditions,

we perform up to about 80 000 (Metropolis only) equilibration sweeps and up to about

160 000 measurement sweeps. (As usual, the quality of the equilibration was confirmed

by comparing the results of hot and cold starts.) We simulate systems of linear sizes up

to 𝐿2 = 802 and average the results over about 5000 samples. Each sample is subjected

to periodic and twisted-periodic boundary conditions, and the resulting free energies are

compared to evaluate the helicity modulus from eq. (3).

We use an ensemble method (see, e.g., Ref. [74]) to estimate the error of the

free energy. We generate a large ensemble of synthetic internal energy curves 𝑈𝑖 (𝑇) =

𝑈 (𝑇) + 𝑟 (𝑇)Δ𝑈 (𝑇), where Δ𝑈 is the statistical error obtained from Monte Carlo and 𝑟 (𝑇)

is a random number chosen from a normal distribution of unit variance. Integrating these

curves via (6) generates an ensemble of free energies 𝐹𝑖. Mean and standard deviation

of this ensemble are then propagated through eq. (3) to find the helicity modulus and the

associated error.

4. RESULTS

4.1. FREE ENERGY RESPONSE TO FINITE TWIST

We now turn to our results for the response of the two-dimensional XY model to

various twists in the boundary conditions. Figure 1(a) shows the helicity modulus 𝜌𝑠 (Θ)

as a function of temperature for an infinitesimal twist as well as a twist of Θ = 𝜋/3. For the

infinitesimal twist, 𝜌𝑠 is measured in the untwisted system via eq. (5). For a finite twist, 𝜌𝑠

is obtained from the free energy difference between simulations with twisted and untwisted
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Figure 1. (a) Helicity modulus 𝜌𝑠 (Θ) as a function of temperature 𝑇 for different system
sizes 𝐿. The filled symbols show 𝜌𝑠 for a twist of Θ = 𝜋/3, obtained via Eqs. (3) and (6).
The dotted lines show 𝜌𝑠0 for an infinitesimal twist measured in the untwisted system via
Eq. (5). The straight solid line corresponds to 𝜌𝑠 = 2𝑇/𝜋, it intersects the stiffness curves
at temperatures 𝑇∗(𝐿). The critical temperature 𝑇𝑐 is obtained by extrapolating 𝑇∗(𝐿) to
the thermodynamic limit according to Eq. (7). This extrapolation gives 𝑇𝑐 = 0.891(7). In
contrast, the helicity modulus values for a twist of Θ = 𝜋, shown as dash-dotted line for
𝐿 = 56, are significantly lower than the other data. (b) Helicity modulus 𝜌𝑠 (Θ) as a

function of temperature 𝑇 at fixed 𝐿 = 40 for different twist angles Θ. The statistical errors
in both panels are comparable to or smaller than the symbol sizes.
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boundary conditions, as explained in Sec. 3. The resulting 𝜌𝑠 values for the infinitesimal

twist and Θ = 𝜋/3 agree within their statistical errors, giving us additional confidence in

our numerical approach.

The helicity modulus curves can be used to find the critical temperature. In the

thermodynamic limit, 𝜌𝑠 vanishes in the disordered phase whereas it is nonzero in the quasi

long-range ordered phase. The BKT transition is marked by a universal jump in 𝜌𝑠. Using

the Kosterlitz-Nelson relation, 𝑇𝑐 can be identified by the intersection of the infinite-system

𝜌𝑠 vs. 𝑇 curve with a straight line of slope 2/𝜋 [75]. As the correlation length increases

exponentially for 𝑇 → 𝑇𝑐 at a BKT transition, finite-size corrections take a logarithmic

form. Thus, 𝑇𝑐 is found by extrapolating 𝑇∗(𝐿), the temperature at which the 𝜌𝑠 vs. 𝑇 curve

for size 𝐿 intersects the line of slope 2/𝜋, according to

𝑇∗(𝐿) = 𝑇𝑐 +
𝐴

ln2(𝑏𝐿)
(7)

where 𝐴, 𝑏 are non-universal fitting parameters. We find 𝑇𝑐 = 0.891(7) from twisted

boundary conditions withΘ = 𝜋/6, which agrees with high-accuracy results in the literature

[73, 76, 77, 78].

Figure 1(a) also shows data for Θ = 𝜋. Unexpectedly, the helicity modulus values

resulting from eq. (3) in this case are significantly below the values for smaller Θ. This

is further illustrated in Fig. 1(b) which compares the helicity modulus for different twist

angles Θ. Whereas the data for Θ = 0, 𝜋/6, and 𝜋/2 all agree within their error bars, some

deviations appear forΘ = 5𝜋/6 close to the BKT transition. They become more pronounced

for Θ = 𝜋 and persist in the entire quasi-long-range ordered phase. It is worth emphasizing

that this happens even though the layer-to-layer twist Θ/𝐿 remains small compared to

unity, justifying the expansion that leads to eq. (2). What is the reason for this surprising

discrepancy? Arguments put forward in Ref. [45] suggest that the chirality of the twist plays

an important role.
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So far we have considered thermodynamic states that fulfill the global twist Θ in,

say, the clockwise direction by introducing an average clockwise twist of Θ/𝐿 between

neighboring layers. However, the same global twist can be achieved by a counter-clockwise

twist with local angle of (2𝜋 − Θ)/𝐿 between consecutive layers. At low temperatures,

the additional free energy for a twist in the “wrong” direction is much larger than 𝑘𝐵𝑇 .

Therefore, this state is exponentially suppressed. Local twist angles corresponding to

higher winding numbers can also be ruled out using the same argument. However, with

increasing temperature, states of both chiralities (and higher winding numbers) will be

mixed, leading to an extra entropic contribution to the free energy. Importantly, Θ = 𝜋

is a special case that allows the mixing of opposite chiralities even at 𝑇 = 0. Let us now

quantitatively study the mixing of the states as twist, temperature and system size is varied.

According to eq. (2), we expect the free energy difference between the twisted and

untwisted systems to behave as Δ𝐹 ∝ Θ2, at least as long as higher-order terms in Θ/𝐿

can be neglected. We have studied the Θ dependence of Δ𝐹 systematically at various

temperatures in the quasi long-range ordered phase close to 𝑇𝑐; the results are presented in

Fig. 2. The figure shows that Δ𝐹 follows the quadratic Θ dependence up to about Θ = 2𝜋/3

within the statistical errors of the data, but significant deviations are observed for larger

twist angles.

The special case of anti-periodic boundary conditions (Θ = 𝜋) right at the BKT tran-

sition temperature was already studied by Hasenbusch [79, 80]. He derived an expression

for the ratio of the partition functions with periodic and antiperiodic boundary conditions

in the two-dimensional XY model. It includes the leading finite-size corrections and reads

𝑍Θ=𝜋

𝑍Θ=0
= 0.08643(1) − 0.1358(1)

ln(𝐿) + 𝐶 , (8)
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Figure 2. Free energy difference Δ𝐹 between systems with periodic and twisted-periodic
boundary conditions vs. squared twist angle Θ2 for size 𝐿 = 40 and several temperatures

close to 𝑇𝑐. The dashed line shows a fit of Δ𝐹 for 𝑇 = 0.82 to a quadratic Θ dependence in
the range 0 ≤ Θ2 ≤ (2𝜋/3)2. Δ𝐹 at 𝑇𝑐 ≈ 0.893, obtained using eq. (8) is marked by the

star symbol. Statistical errors are comparable to the symbol size or smaller.

where the constant 𝐶 approximately captures contributions from higher order terms. For

the purpose of comparing with our Monte Carlo results, we set 𝐶 = 4.3 as in Ref. [79]. The

free energy difference Δ𝐹 resulting from this formula agrees well with our data, see Fig. 2.

We attribute the deviation of Δ𝐹 from the quadratic Θ dependence to the mixing

of states of opposite chirality which becomes more pronounced as Θ approaches 𝜋. The

extent of the mixing can be estimated by studying a simple two-state model consisting of a

state with clockwise (CW) chirality of the twist and a state with counter-clockwise (CCW)

chirality. At low temperatures and large 𝐿, the energy associated with the CW state reads

𝑈CW = −𝐽𝐿2 [1 + cos(Θ/𝐿)] ≈ −2𝐽𝐿2 + 𝐽Θ2/2, whereas the energy of the CCW state

is given by 𝑈CCW = −𝐽𝐿2 [1 + cos((2𝜋 − Θ)/𝐿)] ≈ −2𝐽𝐿2 + 𝐽 (2𝜋 − Θ)2/2. At higher

temperatures, fluctuations about the perfect spin-wave states become important. Their effect
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can be approximately captured by replacing 𝐽 in the above formulas for𝑈CW and𝑈CCW by

the (renormalized) helicity modulus 𝜌𝑠 (𝑇). The corresponding canonical probabilities of

CW and CCW states read

𝑝CW =
1
𝑍
𝑒−

𝜌𝑠Θ
2

2𝑇 , 𝑝CCW =
1
𝑍
𝑒−

𝜌𝑠 (2𝜋−Θ)2
2𝑇 (9)

with

𝑍 = 𝑒−
𝜌𝑠Θ

2
2𝑇 + 𝑒−

𝜌𝑠 (2𝜋−Θ)2
2𝑇 . (10)

As discussed earlier, this implies that the CCW state is exponentially suppressed as 𝑇 → 0

for any Θ < 𝜋 whereas both states contribute equally at all temperatures below𝑇𝑐 for Θ = 𝜋.

The helicity modulus right at the BKT transition temperature 𝑇𝑐 is known from the

Kosterlitz-Nelson relation, 𝜌𝑠 (𝑇𝑐) =
2𝑇𝑐
𝜋

. Inserting this into eq. (9) gives the canonical

probabilities shown in the inset of Fig. 3. The contribution of the CCW state to the mixture

increases with Θ and becomes significant for Θ ⪆ 2𝜋/3. The free energy difference

Δ𝐹 between systems with periodic and twisted-periodic boundary conditions can also be

computed within the two-state model,

Δ𝐹 = ⟨Δ𝑈⟩ − 𝑇𝑆 (11)

where 𝑆 is the Von-Neumann entropy. The main panel of Fig. 3 shows Δ𝐹 as a function of

Θ at the BKT transition temperature. The deviation of Δ𝐹 from the quadratic dependence

on Θ resembles the corresponding Monte Carlo result in Fig. 2. Moreover, Δ𝐹 from Eq.

(8) in the thermodynamic limit 𝐿 = ∞ (marked by the star symbol) agrees well with the

model results. The simple two-state system thus captures the important features present in

Fig. 2. This supports the notion that the mixing of states with opposite chiralities leads to

the deviation of Δ𝐹 from the quadratic Θ dependence.



69

0 2 4 6 8 10
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F

0 1 2 3
0.0

0.5

1.0

p

CW
CCW

Figure 3. Free energy difference Δ𝐹 at the BKT transition temperature 𝑇𝑐 between systems
with periodic and twisted-periodic boundary conditions, as evaluated using the two-state

model (dashed line). The solid line corresponds to a quadratic fit in the range
0 ≤ Θ2 ≤ (2𝜋/3)2. The value of Δ𝐹 from eq. (8) in the thermodynamic limit is marked by

the star symbol. The canonical probabilities of the two states are shown in the inset as
functions of Θ.

We now move beyond the two-state model and quantify the mixing of chiralities in

the Monte Carlo data. To determine the excess free energy due to the mixing, we first fit a

quadratic function to Δ𝐹 (Θ) in the range 0 ≤ Θ ≤ 2𝜋/3 (separately for each system size).

Denoting the fit function by Δ𝐹fit(𝐿,𝑇,Θ), we define the excess free energy 𝛿Δ𝐹 at twist

angle 𝜋 as the difference between Δ𝐹fit(𝐿,𝑇, 𝜋) and the Δ𝐹MC(𝐿,𝑇, 𝜋) obtained from MC,

𝛿Δ𝐹 (𝐿,𝑇, 𝜋) = Δ𝐹fit(𝐿,𝑇, 𝜋) − Δ𝐹MC(𝐿,𝑇, 𝜋). (12)

In other words, Δ𝐹fit is the free energy cost of the twist expected if only states of one chirality

contribute, whereas 𝛿Δ𝐹 captures the additional free energy due to chirality mixing.
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Figure 4. Excess entropy 𝛿𝑆 due to the mixing of chiralities vs. temperature 𝑇 for different
system sizes. The solid horizontal line corresponds to 𝛿𝑆 = ln(2). The inset shows the
extrapolation of the maximum value of each 𝛿𝑆 vs. 𝑇 curve to infinite system size. The

extrapolation gives 𝛿𝑆max(𝐿 = ∞) = 0.69(1) and agrees with ln(2).

As the excess free energy is expected to be entropic in nature, we define 𝛿𝑆 = 𝛿Δ𝐹/𝑇

as the excess entropy due to the mixing of chiralities. Our numerical results for the

excess entropy are presented in Fig. 4. The figure shows that 𝛿𝑆 approaches zero with

increasing system size for high temperatures while it appears to approach a constant for

low temperatures. In fact, the figure suggests that 𝛿𝑆 approaches a step function in the

thermodynamic limit. To determine the step height and position, we extrapolate the peak

value 𝛿𝑆max of the 𝛿𝑆 vs. 𝑇 curves using,

𝛿𝑆max(𝐿) = 𝛿𝑆max(∞) + 𝑎𝐿−𝜆 (13)
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where 𝑎, 𝜆 are fitting parameters. (We determine 𝛿𝑆max as an extremum of a quadratic

curve fitted in the vicinity of the peak.) The extrapolation is shown in the inset of Fig. 4

and yields 𝛿𝑆∞ = 0.69(1) ≈ ln(2), in agreement with the expectation of contributions from

two degenerate states. Additionally, an extrapolation of the temperature at which the 𝛿𝑆

vs. 𝑇 curves cross the 𝛿𝑆 = ln(2) line matches with 𝑇𝑐 within the error bars. Thus, our

numerical data extrapolate to 𝛿𝑆 = ln(2)Θ(𝑇𝑐 −𝑇) where Θ is the Heavyside step function.

We note that the arguments predicting the excess ln(2) entropy due to the chirality mixing

do not include states with higher winding numbers. These states are known to renormalize

the helicity modulus in two dimensions [77, 81], but the effect is tiny and only visible in

high-accuracy simulations beyond our numerical precision.

The excess entropy due to the chirality mixing reduces the free energy cost of a 𝜋

twist by𝑇 ln(2). Consequently, the helicity modulus 𝜌𝑠 (𝜋) computed from eq. (3) is reduced

by 2 ln(2)𝑇/𝜋2 compared to the infinitesimal twist value arising from eq. (4). This explains

the observation in Fig. 1 of a lower helicity modulus for the 𝜋 twist. Consequently, if one

wishes find the critical temperature from simulations employing a 𝜋 twist (i.e., anti-periodic

boundary conditions), the reduction of 𝜌𝑠 has to be accounted for. This can be achieved

by adding the correction to the Kosterlitz-Nelson relation by changing the slope of the line

crossing the 𝜌𝑠 curves from 2/𝜋 to 2/𝜋 − 2 ln(2)/𝜋2. The resulting analysis is presented

in Fig. 5 which shows the helicity modulus for a 𝜋 twist as a function of temperature for

different system sizes. To find 𝑇𝑐 we extrapolate, using eq. (7), the intersection temperature

of the 𝜌𝑠 curves with a line of modified slope, and obtain 𝑇𝑐 = 0.897(2). This is in

reasonable agreement with the literature value [77].

4.2. BREAKING OF THE CHIRAL SYMMETRY

In Sec. 4.1, we have established that, for an imposed twistΘ = 𝜋, the thermodynamic

ensemble contains an equal mixture of states with clockwise and counter-clockwise local

twists. Now we explore the question whether a single given macroscopic system fluctuates
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Figure 5. Helicity modulus 𝜌𝑠 (𝜋) for a twist of Θ = 𝜋 (anti-periodic boundary conditions).
The inset shows the intersection temperatures 𝑇∗ of the helicity modulus curves with the

modified Kosterlitz-Nelson line of slope 2/𝜋 − 2 ln(2)/𝜋2. An extrapolation according to
eq. (7) yields 𝑇𝑐 = 0.897(2).

between clockwise and counter-clockwise orientations or whether it spontaneously breaks

the chiral symmetry below 𝑇𝑐 by freezing into one orientation. As the classical XY

Hamiltonian does not contain any dynamic terms, the answer to this question will depend on

the assumed dynamics of the system. Here, we focus on dissipative local model-A dynamics

according to the Hohenberg-Halperin classification [82], i.e., a purely relaxational dynamics

without conservation laws. However, the results should hold qualitatively for other local

dynamics as well.

To analyze chiral fluctuations, we define the bulk chirality ℎ via the vector product

between nearest-neighbor spins along the direction of the twist. Assuming a twist in the

𝑥-direction, ℎ is given by

ℎ =
1
𝐿

∑︁
⟨𝑖 𝑗⟩𝑥

k̂ ·
(
S𝑖 × S 𝑗

)
(14)



73

1.2 1.3 1.4 1.5 1.6
1/T

12

10

8

6

4

ln
(

)

L = 8
L = 10
L = 12
L = 14
L = 18
L = 22

101 2 × 101

L

10

15

Efli
p

Figure 6. Flip rate Λ of the bulk chirality ℎ as a function of the inverse temperature 1/𝑇
for different system sizes 𝐿. The solid lines are fits to the ansatz (15). The resulting system
size dependence of the activation energy Δ𝐸flip is shown in the inset in a semi-logarithmic

plot. The dotted line is a fit to the function, Δ𝐸flip = 𝐸0 ln(𝑘0𝐿), giving fit parameters
𝐸0 = 7.91(6) and 𝑘0 = 0.39(1).

where site 𝑗 is the nearest neighbor of site 𝑖 in the positive 𝑥 direction, and k̂ is the unit

vector in the 𝑧-direction. This means positive ℎ correspond to a counter-clockwise twist

and negative ℎ correspond to a clockwise twist.

We monitor the time evolution of the bulk chirality ℎ in long Monte Carlo runs that

perform only local Metropolis updates (implementing model-A dynamics). Specifically,

we measure the rate Λ at which the chirality changes sign during such a simulation. Figure

6 shows the flip rate Λ as a function of temperature for different system sizes observed for

runs of 1.2 × 106 Metropolis sweeps averaged over 400 samples. The data clearly suggest

an exponential dependence of the flip rate on the inverse temperature. Indeed, if chirality

flips are governed by activation over an energy barrier Δ𝐸flip, the flip rate is expected to
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Figure 7. Schematic illustrating how a vortex-antivortex pair can flip the bulk chirality.
For details see text.

follow the ansatz

Λ = 𝑐𝑇 𝑏 exp(−Δ𝐸flip/𝑇) . (15)

where 𝑏 and 𝑐 are fit parameters. Figure 6 demonstrates that the observed flip rates indeed

follow this ansatz within their statistical errors. The activation energies Δ𝐸flip obtained

from the fits in Fig. 6 are presented in the inset as a function of the system size in a

semi-logarithmic plot. The data are well described by the logarithmic function

Δ𝐸flip = 𝐸0 ln(𝑘0𝐿) (16)

with 𝐸0 = 7.91(6) and 𝑘0 = 0.39(1). This logarithmic dependence suggests that flips of

the bulk chirality are facilitated by a vortex mechanism.

Figure 7 illustrates how the creation and annihilation of a vortex-antivortex pair

can reverse the sign of the bulk chirality. Imagine a system with fixed boundaries in the 𝑥-

direction that impose a 𝜋 twist and periodic boundary conditions in the 𝑦-direction. Initially,
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the system features a uniform clockwise twist to satisfy the boundary conditions. When a

vortex-antivortex pair is introduced as shown in the figure, the spins between the vortices

now rotate in the opposite direction. Now imagine that the + vortex travels upwards across

the (periodic) boundary, approaches the − vortex from below, and finally annihilates. The

end result is a state with a uniform counter-clockwise twist, i.e., the chirality ℎ has changed

sign. The activation energy of this process is given by the energy of a vortex-antivortex

pair at the largest distance 𝐿/2. In the continuum limit, the energy of a vortex-antivortex

pair at distance 𝐷 is given by 𝐸pair = 𝐸core + 2𝜋𝐽 ln (𝐷/𝑎) where 𝐸core is the vortex core

energy and 𝑎 the core size. Neglecting the core energy (which can be formally absorbed

by a shift of 𝑎), a comparison with eq. (16) gives a reasonable agreement. This indicates

that the leading contribution to Δ𝐸flip comes from the formation of a vortex-antivortex pair.

Deviations can be attributed to finite-size effects, contributions from other flip processes

and uncertainties in the sequence of fits leading to eq. (16) 6.

The results of this section demonstrate that the energy required to flip the bulk

chirality diverges with system size in the thermodynamic limit. The divergence is only

logarithmic in 𝐿 in contrast to the case of a domain wall whose energy would diverge

linearly in 𝐿 in two dimensions. Nonetheless, it implies that a macroscopic system will

not fluctuate between states of opposite bulk chirality during its time evolution (for local

dynamics). In other words, the chiral symmetry is spontaneously broken below the BKT

transition.

6If one considers open rather than periodic boundary conditions in the direction perpendicular to the twist,
a single vortex moving across the system is sufficient to flip the bulk chirality. Test simulations with open
boundary conditions lead to the same logarithmic dependence (16) of the activation energy Δ𝐸flip but with
prefactor 𝐸0 = 3.7(1), indicating the formation of a single vortex.
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5. CONCLUSION

To summarize, in this paper we have studied the effects of finite (non-infinitesimal)

twists in the boundary conditions on a two-dimensional classical ferromagnetic XY model.

The system’s response to the twist has been studied by a direct evaluation of the free energy

by means of large-scale Monte Carlo simulations. We have found that in the quasi long-

range ordered phase below the BKT transition, the free energy cost of a non-infinitesimal

twist deviates from the expected quadratic dependence on the twist angle. In the case of

a 𝜋 twist (anti-periodic boundary conditions), the mixing of states of opposite chiralities

causes an excess entropy contribution of ln(2) that lowers the free energy cost of the twist.

Thus, if the helicity modulus is calculated from the free energy of a 𝜋-twisted system (using

eq. (4)), its value is reduced compared to the usual helicity modulus obtained from an

infinitesimal twist. We note that our results have been obtained by comparing periodic and

twisted-periodic boundary conditions. However, all our arguments are expected to hold as

well for systems in which the boundary spins are held at fixed angles. We also note that

our discussion has been based on the phase representation of the XY model, but the same

results are expected in other representations [83, 84, 85, 86] provided they correctly reflect

the chiral symmetry of the boundary conditions.

A macroscopic 𝜋-twisted system in the quasi long-range ordered phase sponta-

neously breaks the chiral symmetry between states with clockwise and counter-clockwise

local twists (at least in the case of local dynamics). This implies that experiments on a

single macroscopic system cannot observe the ln(2) entropy contribution from chirality

mixing and the corresponding reduction of the apparent helicity modulus value. The ex-

cess entropy is expected to be observable in mesoscopic systems that are small enough to

fluctuate between states with opposite chirality and in situations involving not just a single

system but an entire (thermodynamic) ensemble.
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Chirality mixing is important for computer simulations for at least two reasons.

First, efficient simulations often involve nonlocal algorithms (such as the Wolff cluster

algorithm) that can freely flip the bulk chirality of the system. Moreover, system sizes in

computer simulations are sometimes not very large so that even algorithms with local updates

(such as the Metropolis algorithm) may allow the system to fluctuate between different

chiralities. Free energies of 𝜋-twisted systems computed in such simulations contain the

−𝑇 ln(2) entropic free energy contribution due to chirality mixing. To compute the usual

(infinitesimal-twist) helicity modulus 𝜌𝑠0 from simulations with a 𝜋 twist, this entropic

contribution needs to be removed. When determining the BKT transition temperature from

the helicity modulus data, one can, alternatively, modify the Kosterlitz-Nelson relation as

discussed in Sec. 4.1.

The effects of twisted boundary conditions on an XY model in thin-film geometry

were also studied in Ref. [59] using a mean-field theory. For a twist of Θ = 𝜋, this work

finds an additional singularity of the free energy below the bulk critical temperature. It

is induced by the boundary conditions and leads to kink in the Casimir force. In our

calculations, we do not observe such a singularity. We believe that this may stem from

the fact that the mechanism proposed in Ref. [59], viz., a competition between a rotational

state and a planar state to fulfill the boundary conditions, requires soft spin variables and

does not hold for the hard spins (of fixed unit length) of our XY model. Alternatively, the

lack of additional singularity might be because states with both directions of rotation are

simultaneously realized in our simulations at all twist angles, whereas in Ref. [59], only one

direction is considered in the calculations.

The partition function of a quantum system in 𝑑 dimensions can often be mapped

onto that of a classical system in 𝑑 + 1 dimensions. Our results thus apply to a one-

dimensional (particle-hole symmetric) quantum rotor model with twisted boundary con-

ditions. Specifically, our findings imply that in a finite-size rotor model the states with

opposite chirality hybridize. However in the thermodynamic limit, the ground state is
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doubly degenerate because the hybridization goes to zero and the tunneling time between

states of opposite chirality diverges with system size. Analogous results are expected in a

field-theoretic approach based on the sine-Gordon model [87, 88].

The present paper has focused on two dimensions. Two dimensions are a special

case because the free energy cost of a twist is independent of system size, see eq. (2).

Thus, the excess entropy discussed above makes a non-negligible contribution even in

the thermodynamic limit. In a higher dimensional XY model, the excess entropy would

still take the value ln(2) for a 𝜋 twist. However, its contribution to the helicity modulus,

2 ln(2)𝐿2−𝑑/𝜋2, would vanish in the thermodynamic limit.

Our work also relates to some of the questions raised by Brown and Ciftan [45].

They studied the effects of twisted-periodic and anti-periodic boundary conditions on a

three-dimensional classical Heisenberg model and discussed the notion of mixing states

of different chiralities in response to twisted-periodic boundary conditions. However,

they analyzed the internal energy cost of the twist rather than the free energy cost. The

authors report deviations from a quadratic twist angle dependence of the internal energy

cost somewhat similar to what we find for Δ𝐹, but the magnitude of the deviation in their

case is much larger than 𝑇 ln(2). Moreover, the internal energy cost (as opposed to Δ𝐹)

is not expected to contain the entropy due to the mixing of chiralities. This suggests that

the deviations from a quadratic twist angle dependence of the internal energy cost in Ref.

[45] have a different origin. Specifically, Heisenberg spins can reduce the energy cost of

twisted-periodic boundary conditions by tilting out of the plane in which the twist is applied.

In contrast, they cannot avoid antiperiodic boundary conditions, in agreement with the fact

that the energy cost of anti-periodic boundary conditions in Ref. [45] is much larger than

that of even the largest twist angles. A quantitative analysis of the effects of twisted-periodic

boundary conditions in the Heisenberg case remains a task for the future.
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Our results have potential implications for experiments proposed to detect the BKT

phase transitions [89], in which anti-parallel external fields would be used to study charge-

current cross correlations. Moreover, in discrete spin systems such as the 𝑞−state clock

model [90], twists are necessarily non-infinitesimal, and corrections to the infinitesimal-

twist helicity modulus must be considered.

APPENDIX: HELICITY MODULUS FOR AN INFINITESIMAL TWIST

In this Appendix, we derive the expression (5) for the second derivative of the free

energy on the twist angle. This expression allows the evaluation of helicity modulus for an

infinitesimal twist in terms of correlation functions of the untwisted system. The derivation

follows Refs. [68, 91].

Consider an XY magnet in 𝑑 dimensions, of linear size 𝐿. Applying twisted

boundary conditions (BC) along 𝑥 axis implies that the spins at 𝑥 = 0 make an angle Θ w.r.t.

the spins at 𝑥 = 𝐿. The change in free energy due to the twist can be parameterized as

Δ𝐹 =
1
2
𝜌𝑠𝑉

(
Θ

𝐿

)2
, (17)

where 𝑉 = 𝐿𝑑 . In the limit of Θ → 0,

𝜌𝑠 =
𝐿2

𝑉

(
𝜕2𝐹

𝜕Θ2

)
Θ=0

. (18)

The second derivative of the free energy can be evaluated by treating Θ as a parameter of

the partition function.

To this end, we start from the Hamiltonian

𝐻 = −
∑︁
<𝑖 𝑗>

𝐽 cos(𝜙𝑖 − 𝜙 𝑗 ) (19)
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with boundary conditions 𝜙𝑖 = 0 at 𝑥𝑖 = 0 and 𝜙𝑖 = Θ at 𝑥𝑖 = 𝐿. We now perform a variable

transformation 𝜓𝑖 = 𝜙𝑖 − Θ𝑥𝑖/𝐿. Note that 𝜓𝑖 has untwisted BC, 𝜓𝑖 = 𝜙𝑖 = 0 at 𝑥𝑖 = 0 and

𝑥𝑖 = 𝐿. The dependence on the twist angle Θ has been moved to the Hamiltonian

𝐻 = −
∑︁
<𝑖 𝑗>

𝐽 cos(𝜓𝑖 + Θ
𝑥𝑖

𝐿
− 𝜓 𝑗 − Θ

𝑥 𝑗

𝐿
) , (20)

𝐻 = −
∑︁
<𝑖 𝑗>

𝐽 cos(𝜓𝑖 − 𝜓 𝑗 −
Θ

𝐿
(𝑥𝑖 − 𝑥 𝑗 )) . (21)

The evaluation of (𝜕2𝐹/𝜕Θ2) is now straight forward, starting from

𝐹 = −𝑘𝐵𝑇 ln(𝑍 (Θ)) = −𝑘𝐵𝑇 ln
(
Tr𝑒−𝛽𝐻

)
. (22)

First,

𝜕𝐹

𝜕Θ
= − 𝑘𝐵𝑇

1
𝑍

(
𝜕𝑍

𝜕Θ

)
𝜕𝐹

𝜕Θ
=

1
𝑍

Tr
(
𝜕𝐻

𝜕Θ
𝑒−𝛽𝐻

)
=

〈
𝜕𝐻

𝜕Θ

〉
.

Then,

𝜕2𝐹

𝜕Θ2 =
𝜕

𝜕Θ

(
1
𝑍

Tr
(
𝜕𝐻

𝜕Θ
𝑒−𝛽𝐻

))
𝜕2𝐹

𝜕Θ2 = 𝛽

〈
𝜕𝐻

𝜕Θ

〉2
+

〈
𝜕2𝐻

𝜕Θ2

〉
− 𝛽

〈(
𝜕𝐻

𝜕Θ

)2
〉
.

Each derivative in the above equation can be evaluated from Eq. (21).

(
𝜕𝐻

𝜕Θ

)
Θ=0

=
1
𝐿

∑︁
<𝑖 𝑗>

𝐽 sin(𝜓𝑖 − 𝜓 𝑗 ) (𝑥𝑖 − 𝑥 𝑗 ) (23)(
𝜕2𝐻

𝜕Θ2

)
Θ=0

=
1
𝐿2

∑︁
<𝑖 𝑗>

𝐽 cos(𝜓𝑖 − 𝜓 𝑗 ) (𝑥𝑖 − 𝑥 𝑗 )2. (24)
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Collecting all the terms,

(
𝜕2𝐹

𝜕Θ2

)
Θ=0

= 𝛽

〈
𝜕𝐻

𝜕Θ

〉2

Θ=0
+

〈
𝜕2𝐻

𝜕Θ2

〉
Θ=0

− 𝛽
〈(
𝜕𝐻

𝜕Θ

)2
〉
Θ=0

. (25)

The first term vanishes due to symmetry, but

(
𝜕2𝐹

𝜕Θ2

)
Θ=0

=
1
𝐿2

〈∑︁
<𝑖 𝑗>

𝐽 cos(𝜓𝑖 − 𝜓 𝑗 ) (𝑥𝑖 − 𝑥 𝑗 )2

〉
− 𝛽

𝐿2

〈∑︁
<𝑖 𝑗>

{
𝐽 sin(𝜓𝑖 − 𝜓 𝑗 ) (𝑥𝑖 − 𝑥 𝑗 )

}2
〉

where the thermodynamic averages ⟨...⟩ are defined for Θ = 0. In vector notation, cos(𝜓𝑖 −

𝜓 𝑗 ) = ®𝑆𝑖 · ®𝑆 𝑗 , sin(𝜓𝑖 − 𝜓 𝑗 ) = −𝑘̂ · ( ®𝑆𝑖 × ®𝑆 𝑗 ). Thus,

(
𝜕2𝐹

𝜕Θ2

)
Θ=0

=
1
𝐿2

∑︁
<𝑖 𝑗>

𝐽⟨ ®𝑆𝑖 · ®𝑆 𝑗 ⟩(𝑥𝑖 − 𝑥 𝑗 )2

− 𝛽

𝐿2

〈{∑︁
<𝑖 𝑗>

𝐽 ( 𝑘̂ · ( ®𝑆𝑖 × ®𝑆 𝑗 ) (𝑥𝑖 − 𝑥 𝑗 ))
}2〉

.

The Θ → 0 limit thus allows a simple evaluation of (𝜕2𝐹/𝜕Θ2) and of the helicity modulus

𝜌𝑠. This completes the derivation of Eq. (5).
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ABSTRACT

We study the phases and phase transitions of a disordered one-dimensional quantum

𝑞-state clock Hamiltonian using large-scale Monte Carlo simulations. Making contact with

earlier results, we confirm that the clean, translational invariant version of the model, for

𝑞 = 6, hosts an intermediate emergent quasi-long-range ordered (QLRO) phase between the

symmetry-broken true long-range ordered (TLRO) phase and the disordered (paramagnetic)

phase. With increasing disorder strength, the quasi-long-range ordered phase shrinks and

finally vanishes at a multi-critical point, beyond which there is a direct transition from

the TLRO phase to the paramagnetic phase. After establishing the phase diagram, we

characterize the critical behaviors of the various quantum phase transitions in the model. We

find that weak disorder is an irrelevant perturbation of the Berezinskii-Kosterlitz-Thouless

transitions that separate the QLRO phase from the TLRO and paramagnetic phases. For

stronger disorder, some of the critical exponents become disorder-dependent already before

the system reaches the multicritical point. We also show that beyond the multicritical

point, the direct transition from the TLRO phase to the paramagnetic phase is governed

by an infinite-randomness critical point in line with strong-disorder renormalization group

predictions. While our numerical results are for 𝑞 = 6, we expect the qualitative features of

the behavior to hold for all 𝑞 > 4.
7Published: Physical Review B 111, 094212 (2025)
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1. INTRODUCTION

The impact of quenched disorder on both quantum and classical phase transitions

is a subject matter with a long and rich history (see, e.g., Ref. [9, 14, 92] for recent

reviews). These studies have produced a welter of results ranging from the celebrated Harris

[93] and Imry-Ma [94] criteria that predict the stability of phases and phase transitions

against quenched impurities to the discoveries of numerous exotic phenomena close to

disordered quantum phase transitions. These include infinite-randomness critical points

and the attendant quantum Griffiths phases [95, 96, 97, 98, 99, 100] as well as smeared

phase transitions [22, 25, 101].

The vast majority of work within this area has centered on studying the effects of

impurity-induced randomness on phases that follow the Landau symmetry classification

and the corresponding symmetry-breaking phase transitions. Relatively little is known

about the effects of random disorder on other types of transitions including topological

transitions that do not break the symmetry of a local order parameter. A well-known example

is the Berezinskii-Kosterlitz-Thouless (BKT) transition [6, 102] that frequently obtains

in (1+1)-dimensional quantum many-body systems with 𝑂 (2) [or 𝑈 (1)] order parameter

symmetry or, equivalently, in the corresponding classical statistical models in two space

dimensions, such as the two-dimensional XY model. These transitions correspond to the

binding and unbinding of vortex/anti-vortex pairs and demarcate a phase with exponentially

decaying order parameter correlations from a critical, quasi-long-range ordered (QLRO)

phase characterized by power-law decay of the correlations.

Interestingly, such critical or massless phases, accompanied by BKT transitions,

can also occur when the 𝑂 (2) order parameter symmetry is broken down into 𝑞 discrete

values, evenly spaced on the unit circle, resulting in a discrete 𝑍𝑞 symmetry. Extensive

studies of the ferromagnetic 𝑞-state quantum clock model in one space dimension (and its

two-dimensional classical analog) [103, 104, 105, 106, 107, 108, 109, 110, 110, 111, 112,

113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126], have shown that
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Figure 1. Phases of the one-dimensional 𝑞-state quantum clock model for (a) 𝑞 ≤ 4 (b)
𝑞 > 4 and (c) 𝑞 → ∞ in the absence of quenched randomness. 𝑔 denotes the parameter

used to tune the system through the transition.

such systems host a QLRO phase that intervenes between a symmetry-broken truly long-

range ordered (TLRO) phase, and a disordered (paramagnetic, in the language of magnetic

systems) phase for all 𝑞 > 4. This is illustrated in Fig. 1. In contrast, a direct transition

from the symmetry-broken to the disordered phase obtains for all 𝑞 ≤ 4.

Physical realizations of the 𝑞-state clock model are manifold: For instance, the

planar-to-buckled instability in two-dimensional lattices of ions can be understood via a

mapping to a six-state clock model [127]. Other physical manifestations of the six-state

clock model include the half-filled extended Hubbard model on a triangular lattice in the

atomic limit [128], the displacive structural phase transition in certain two-dimensional

solids [129], the two-dimensional frustrated Heisenberg antiferromagnet on a windmill

lattice [130, 131, 132], the Blume-Capel antiferromagnet on a triangular lattice [133], a

triangular-lattice antiferromagnetic Ising model with a spatially anisotropic next-nearest-

neighbor ferromagnetic coupling [134], stacked triangular antiferromagnetic Ising models

[135, 136], BKT phase transitions in a Kagome spin ice system [137, 138], the melting of
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three-sublattice order in triangular and Kagome antiferromagnets [139], the domain pattern

in certain layered hexagonal materials [140], and the melting of magnetic order in frustrated

triangular rare earth magnets [141].

The impact of (weak) quenched disorder on a system exhibiting a BKT transition

was studied in the seminal work by Giamarchi and Schulz [142], harnessing a perturbative

renormalization group (RG). This approach was later extended to second order in the

disorder strength by Ristivojevic et al. [143]. Set in the context of the superfluid-insulator

transition of disordered 1D bosons, these studies concluded that the BKT transition features

universal critical exponents and a universal value of the Luttinger parameter. In contrast, a

strong-disorder renormalization group (SDRG) calculation by Altman et al. [144, 145, 146]

predicted that the superfluid-insulator transition belongs to a disordered BKT universality

class featuring non-universal, disorder-dependent exponents and a non-universal value of

the Luttinger parameter, at least for sufficiently strong quenched disorder. In the following

years, the question of whether or not quenched disorder can change the critical behavior

of a BKT transition and, if so, the nature of the resulting transition was controversially

discussed in the literature (see, e.g. Refs. [147, 148, 149, 150, 151] and references therein).

To the best of our knowledge, a full resolution to this problem has not been achieved,

yet. However, there seems to be a consensus that sufficiently strong disorder can lead to a

transition that is different from the Giamarchi-Schulz scenario and governed by the physics

of broadly distributed weak links. Most of the above work considered the one-dimensional

Bose gas problem with diagonal disorder. Hrahsheh and Vojta [152] performed large-scale

Monte-Carlo simulations for the particle-hole symmetric case with the off-diagonal disorder

(which maps onto a classical XY-model with the columnar disorder). In analogy with the

Bose glass results, they found that the critical behavior is universal (and identical to the

clean case) for the weak disorder but becomes non-universal and disorder-dependent for the

stronger disorder.
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Δ

Figure 2. Schematic phase diagram for disordered quantum clock model as proposed in
Ref. [153]. 𝑔 denotes the quantum tuning parameter, and Δ is the disorder strength.

The effect of quenched impurities on the one-dimensional quantum clock model

was analyzed by Senthil and Majumdar by laying recourse to an SDRG treatment [153].

Their results, valid for sufficiently strong randomness, yield a direct transition of infinite-

randomness type from the disordered (paramagnetic) phase to the symmetry-broken (TLRO)

phase. This suggests that the size of the intermediate QLRO phase decreases with increasing

disorder strength, leading to the schematic phase diagram in Fig. 2, proposed in Ref. [153].

At lower disorder strengths (not compatible with the SDRG technique), an earlier DMRG

study showed the existence of disorder-dependent exponents across the transition from the

QLRO phase to the paramagnetic phase [154].

In the present manuscript, we report the results of a comprehensive study of the

one-dimensional disordered quantum clock model (focusing on 𝑞 = 6 as a prototypical

case for all 𝑞 > 4) by means of Monte Carlo simulations. We construct the phase diagram

as a function of quantum fluctuation strength and disorder, spanning the range from the
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clean limit all the way to the strong disorder regime. The paper is organized as follows: In

Sec. 2, we introduce the quantum clock Hamiltonian and its mapping to a two-dimensional

classical clock model. Details of the Monte-Carlo simulations are presented in Sec. 3

along with a discussion of the various observables and their expected scaling behavior.

In Sec. 4, we discuss the results of our simulations, which encompasses a discussion of

the phase diagram as well the properties of the various phase transitions in the weak and

strong-disorder regimes. Finally, we set forth our conclusions in Sec. 5.

2. MODEL

To define the Hamiltonian of the one-dimensional disordered quantum clock model,

consider a chain of lattice sites 𝑗 . Each site is occupied by a 𝑞-state clock variable having

eigenstates |𝑝 𝑗 ⟩ with 𝑝 𝑗 = 0, 1, . . . , 𝑞 − 1. Written in the clock-state basis, the Hamiltonian

reads

𝐻 = −
∑︁
𝑗

𝐽 𝑗 cos
[2𝜋(𝑝 𝑗 − 𝑝 𝑗+1)

𝑞

]
−

∑︁
𝑗

ℎ 𝑗

2

(
Γ̂ 𝑗 + Γ̂

†
𝑗

)
. (1)

The raising and lowering operators are defined by Γ̂† |𝑝⟩ = | (𝑝 + 1) mod 𝑞⟩ and Γ̂ |𝑝⟩ =

| (𝑝 − 1) mod 𝑞⟩. The energies 𝐽 𝑗 and ℎ 𝑗 represent the nearest-neighbor couplings and

“transverse field” terms, respectively, at site 𝑗 . In the limit 𝑞 → ∞, the Hamiltonian maps

onto a quantum rotor model whereas the 𝑞 = 2 case reduces to the transverse field Ising

model.

In preparation for the Monte Carlo simulations we now employ the quantum-to-

classical mapping method (see, e.g., Ref. [3]) that recasts the partition function of a 𝑑-

dimensional quantum model as the partition function of an equivalent classical model in

𝐷 = 𝑑 + 1 dimensions. In our case, the mapping, which is detailed in Appendix A leads

from the one-dimensional quantum Hamiltonian (1) to a classical clock model in 𝐷 = 2
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space dimensions. The resulting classical Hamiltonian reads

𝐻cl = −
∑︁
𝑗 ,𝜏

𝐽𝑠𝑗 cos
[2𝜋(𝑝 𝑗 ,𝜏 − 𝑝 𝑗+1,𝜏)

𝑞

]
−

∑︁
𝑗 ,𝜏

𝐽𝑡𝑗 cos
[2𝜋(𝑝 𝑗 ,𝜏 − 𝑝 𝑗 ,𝜏+1)

𝑞

]
.

(2)

Here, the coordinates 𝑗 and 𝜏 correspond to the real-space and imaginary-time positions,

respectively, in the original quantum problem. In the following, we treat interactions

𝐽𝑠
𝑗

and 𝐽𝑡
𝑗

as constants and tune the strength of the fluctuations by varying the “classical”

temperature𝑇 of the model (2). Thus, the classical temperature plays the role of the quantum

tuning parameter 𝑔 in Fig. 2, and𝑇𝑐1 and𝑇𝑐2 will denote the transition temperatures from the

TLRO phase to the QLRO phase and from the QLRO phase to the disordered (paramagnetic)

phase, respectively.

The universal features of the phase diagram and phase transitions are shared by

the quantum model (1) and its classical counterpart (2). Analyzing the classical model by

means of classical Monte Carlo simulations allows us to employ cluster algorithms that are

highly efficient even in the presence of disorder, giving us the ability to study large system

sizes that reduce finite-size effects and probe the thermodynamic limit 8.

Quenched random disorder can be introduced into the quantum Hamiltonian (1)

by making 𝐽 𝑗 and ℎ 𝑗 independent random variables. The quantum-to-classical mapping

implies that such spatially uncorrelated disorder in the quantum Hamiltonian corresponds to

columnar disorder in the classical model (2), i.e., disorder that is perfectly correlated along

the imaginary time direction [155, 156]9. Consequently, both interactions in the classical

model, 𝐽𝑠
𝑗

and 𝐽𝑡
𝑗
, are only functions of the spatial index 𝑗 . A pictorial representation of such

a lattice with correlated impurities is shown in Fig. 3. As the disorder breaks the symmetry
8in contrast, the presence of quenched disorder tends to curtail the efficiency of other simulation techniques

for quantum many-particle systems such as DMRG or tensor-network based methods.
9For the sake of completeness we refer the reader to [157], where the two-dimensional classical clock

model is studied in the presence of completely uncorrelated quenched randomness.
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L

L𝜏

Figure 3. Schematic of a lattice with the correlated disorder in both horizontal (space-like)
and vertical (imaginary-time-like) bonds. Different colors (shading) indicate different

coupling strengths.

between the two directions, we need to specify two different linear system sizes 𝐿 and 𝐿𝜏

in the space and imaginary-time directions, respectively, and treat them as independent

parameters.

We assume the interactions 𝐽𝑠
𝑗

and 𝐽𝑡
𝑗

to be independent random variables, drawn

from the power-law distribution

𝑃(𝐽) = 1
Δ
𝐽 (−1+ 1

Δ
) . (3)

with 0 < 𝐽 ≤ 1. The parameter Δ can take values between 0 and ∞ and serves as a

measure of the disorder strength. The clean limit (uniform 𝐽) is recovered when Δ = 0

and the distribution becomes arbitrarily broad (on a logarithmic scale) in the limit Δ → ∞.
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The universal features of the phase diagram and the phase transitions are expected to be

independent of the details of the disorder distributions. To test this, we have also performed

some calculations with a binary disorder distribution as used in Ref. [152]. We will return

to this question in Sec. 5.

3. METHODS

3.1. SIMULATION DETAILS

We use large-scale Monte Carlo simulations to study the classical Hamiltonian (2)

for 𝑞 = 6, using interactions drawn from the distribution (3). The simulations combine the

single-spin-flip Metropolis algorithm [71] and the Wolff cluster algorithm [37]. The Wolff

cluster algorithm proves beneficial near phase transitions where a single-spin-flip algorithm

suffers critical slowing down, and the Metropolis algorithm helps equilibrate small clusters

of sites that are isolated from the rest of the chain by weak links. A full Monte Carlo sweep

consists of one Metropolis sweep over the lattice followed by one Wolff cluster sweep (a

number of cluster flips such that the total number of flipped spins equals the number of

lattice sites).

The quality of the Monte Carlo equilibration is benchmarked, as usual, by comparing

simulation runs with hot starts (the clock variables take random values initially) and cold

starts (all clock variables take the same value initially). These tests do not show a significant

dependence of the required equilibration times on the disorder strength. However, we

moderately increase the number of Monte Carlo sweeps with increasing disorder strength

to help reduce the additional statistical error stemming from the disorder fluctuations.

Specifically, we employ 2000 equilibration sweeps and 5000 measurement sweeps for low

disorder strengths, whereas we utilize 4000 equilibration sweeps and 10000 measurement

sweeps for higher disorder strengths.
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We simulate systems of linear sizes up to 𝐿 = 320 in the space direction and up

to 𝐿𝜏 = 15000 in the imaginary-time direction, exploring disorder strength from Δ = 0 to

Δ = 2. All results are averaged over a large number of disorder realizations, ranging from

2000 samples for lower disorder strengths to 10000 samples for higher disorder strengths.

3.2. OBSERVABLES

We now turn to the observables measured in the simulations. For definiteness,

we are using the language of magnetic systems. First, we define the order parameter, the

complex magnetization [158]

M =
1
𝑁

∑︁
𝑗 ,𝜏

𝑒𝑖𝜃 𝑗 ,𝜏 = |M|𝑒𝑖𝜙 , (4)

where 𝜃 𝑗 ,𝜏 = 2𝜋𝑝 𝑗 ,𝜏/𝑞 is the phase of the clock variable at the site ( 𝑗 , 𝜏) and 𝑁 = 𝐿 𝐿𝜏

denotes the total number of sites. This complex magnetization is the building block of

several of our primary observables. The average magnetization 𝑚 is given by

𝑚 = [⟨|M|⟩]dis . (5)

Here, the angular brackets ⟨· · · ⟩ indicate the thermodynamic (Monte Carlo) average, and

[· · · ]dis denotes the average over the quenched disorder realizations. The corresponding,

disorder averaged susceptibility is

𝜒 = (𝑁/𝑇)
[
⟨|M|2⟩ − ⟨|M|⟩2]

dis , (6)

and the Binder cumulant [159] is given by

𝑈𝑚 =

[
1 − ⟨|M|4⟩

2⟨|M|2⟩2

]
dis
. (7)
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To identify the transition between the QLRO and TLRO phases, we also define a clock

order-parameter [158],

𝑚𝜙 = [⟨cos(𝑞𝜙)⟩]dis . (8)

It vanishes in the paramagnetic phase as well as the QLRO phases, because the distribution

of the global order parameter phase 𝜙 on the interval [0, 2𝜋) is uniform. In the TLRO phase,

in contrast, the system spontaneously freezes in one of the 𝑞 clock states which implies that

the 𝜙 distribution develops maxima at multiples of 2𝜋/𝑞, rendering 𝑚𝜙 nonzero.

In addition to these magnetization-based observables, we also measure the disorder-

averaged specific heat,

𝐶 = (𝑁/𝑇2)
[
(⟨𝐸2⟩ − ⟨𝐸⟩2)

]
dis , (9)

and the correlation lengths in the spatial and imaginary-time directions. They are obtained

from the second moment of the spin-spin correlation function and can be expressed as

follows [160, 161, 162, 163],

𝜉𝑠 =


(
𝐺̃ (0, 0) − 𝐺̃ (𝑘𝑠0, 0)

𝑘2
𝑠0𝐺̃ (𝑘𝑠0, 0)

)1/2dis

,

𝜉𝜏 =


(
𝐺̃ (0, 0) − 𝐺̃ (0, 𝑘𝜏0)

𝑘2
𝜏0𝐺̃ (0, 𝑘𝜏0)

)1/2dis

.

(10)

Here, 𝐺̃ (𝑘𝑠0, 𝑘𝜏0) is the Fourier transform of the correlation function, while 𝑘𝑠0 = 2𝜋/𝐿

and 𝑘𝜏0 = 2𝜋/𝐿𝜏 are the minimum values of the wave numbers in space and imaginary-time

directions, respectively.

Finally, we also study the helicity modulus or spin stiffness, which measures the

free energy cost of twisted boundary conditions, which can be implemented by fixing the

spins at two opposite boundaries at specific phases, with a fixed angle Θ between them. For

systems with a continuous𝑈 (1) or 𝑂 (2) symmetry, the helicity modulus is usually defined
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as the response to an infinitesimal twist via

𝜌𝑠 =

(
𝜕2𝐹

𝜕Θ2

)
Θ=0

𝐿2−𝐷 , (11)

where 𝐹 is the total free energy.

For the 𝑞-state clock model, any twists of the boundary conditions are necessarily

non-infinitesimal. We, therefore define the helicity modulus as the response to a finite twist

Θ,

𝜌𝑠 (Θ) =
2Δ𝐹
Θ2 𝐿2−𝐷 , (12)

where Δ𝐹 = 𝐹Θ − 𝐹0 is the difference between free energies of the twisted and untwisted

systems [116]. In the Monte Carlo simulations, we do not implement fixed boundary

conditions but rather compare the free energies of periodic and twisted-periodic boundary

conditions. For the latter, we modify the interaction across one of the boundaries to

−𝐽𝑠
𝑗
cos

[
2𝜋(𝑝 𝑗 ,𝜏 − 𝑝 𝑗+1,𝜏)/𝑞 − Θ

]
.

The free energy cannot be measured directly in a Monte Carlo simulation. We

evaluate the free energies explicitly by integrating the (disorder averaged) internal energy

𝑈 = [⟨𝐻cl⟩]dis,

𝐹 (𝑇) = 𝐹 (𝑇0) + 𝑇
∫ 𝛽

𝛽0

𝑑𝛽′𝑈 (𝛽′) , (13)

where 𝛽 = 1/𝑇 . The starting point 𝑇0 of the integration is chosen sufficiently high, i.e., deep

in a paramagnetic phase where the twist in the boundary conditions does not matter, and

𝐹 (𝑇0) for the twisted and the untwisted systems are identical. This ensures that 𝐹 (𝑇0) drops

out of the free energy difference Δ𝐹 in Eq. (12). For our helicity modulus calculations,

we fix 𝑇0 = 30 (much larger than the critical temperature of the clean system) and use a

temperature step 𝑑𝑇 = 0.02 in the numerical integration (13). We have tested 𝑇0 values as

high as 50 and temperature steps as small as 0.01, with unchanged results.
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To estimate the statistical error of 𝐹, we follow an ensemble method (see, e.g.,

Ref. [164]): After each Monte Carlo run, we generate 100 artificial internal energy data sets

𝑈𝑎 (𝑇) = 𝑈 (𝑇) + 𝑟𝛿𝑈 (𝑇), where 𝑟 is a random number taken from a normal distribution of

unit variance and 𝛿𝑈 (𝑇) is the Monte Carlo error estimate of𝑈 (𝑇). We evaluate 𝐹𝑎 (𝑇) for

each𝑈𝑎 (𝑇) using the integration (13). The mean and standard deviation of the set of 𝐹𝑎 (𝑇)

give ⟨𝐹 (𝑇)⟩ and its error 𝛿𝐹 (𝑇).

The helicity modulus can be used to identify the transition between the paramagnetic

to QLRO phases as well as the transition between the QLRO and TLRO phases. In the

paramagnetic phase, the free energy difference Δ𝐹 vanishes as Δ𝐹 ∼ 𝑒−𝐿/𝜉 , where 𝜉 is

correlation length. Consequently, 𝜌𝑠 = 0 in the thermodynamic limit. In the ordered

phase, due to the presence of domain walls, 𝜌𝑠 diverges in the thermodynamic limit. In the

intermediate QLRO phase, 𝜌𝑠 is expected to be nonzero and finite.

As the classical Hamiltonian (2) is anisotropic in the presence of quenched disorder,

we need to distinguish the helicity modulus 𝜌𝑠 for a twist in the space direction from the

helicity modulus 𝜌𝜏 for a twist in the imaginary time direction. In the quantum-to-classical

mapping, the latter is related to the compressibility 𝜅 of the original quantum Hamiltonian

(1). Correspondingly, the Luttinger parameter 𝑔̃ = 𝜋
√
𝜌𝑠𝜅 of the quantum Hamiltonian is

given by 𝑔̃ = (𝜋/𝑇)√𝜌𝑠𝜌𝜏 in our simulations. In the clean limit, the classical Hamiltonian

is isotropic, implying 𝜌𝑠 = 𝜌𝜏.

At a BKT transition, the value of the Luttinger parameter is expected to be universal.

According Kosterlitz and Nelson [75], the Luttinger parameter at the paramagnetic-to-

QLRO transition at 𝑇𝑐2 is given by 𝑔̃ = 2, or equivalently by √
𝜌𝑠𝜌𝜏 = 2𝑇𝑐2/𝜋. Analogously,

the helicity moduli at the QLRO-TLRO transition at 𝑇𝑐1 are expected to fulfill the relation
√
𝜌𝑠𝜌𝜏 = 𝑞

2𝑇𝑐1/8𝜋 [103].

In our Monte Carlo calculations of the helicity modulus, we choose a twist of Θ = 𝜋

which corresponds to anti-periodic boundary conditions. This has the advantage that the

efficient Wolff cluster algorithm can be employed, whereas this would not be possible for



95

twisted bonds −𝐽𝑠
𝑗
cos

[
2𝜋(𝑝 𝑗 ,𝜏 − 𝑝 𝑗+1,𝜏)/𝑞 − Θ

]
with 0 < Θ < 𝜋. As pointed out in Ref.

[164], at Θ = 𝜋, the thermodynamic ensemble consists of an equal mixture of states with

opposite chiralities. This leads to an additional ln(2) entropy contribution in the QLRO

and TLRO phases and a corresponding correction to 𝐹. Including this correction in the

definition (12), shows that the helicity moduli at Θ = 𝜋 are reduced by

Δ𝜌𝑠,𝜏 = −2 ln 2
𝜋2 𝑇 (14)

compared to their values for small twist angles. This can be accounted for either by

correcting the helicity modulus values arising from the simulations or by appropriately

modifying the Jose-Kadanoff and Kosterlitz-Nelson relations.

3.3. FINITE-SIZE SCALING

In this section, we concentrate on the data analysis for the various observables

introduced in Sec. 3.2 by means of finite-size scaling (FSS). As the quenched randomness

breaks the symmetry between the space and imaginary time directions, the behavior close

to a phase transition is governed by two independent scaling variables (dimensionless ratios

between system size and correlation length), viz., 𝐿/𝜉𝑠 and 𝐿𝜏/𝜉𝜏. At a conventional critical

point, the correlation lengths in both space and imaginary time are expected to diverge as

powers of the distance 𝑟 = (𝑇 − 𝑇𝑐)/𝑇𝑐 from criticality, 𝜉𝑠 ∼ |𝑡 |−𝜈 and 𝜉𝜏 ∼ 𝜉𝑧 ∼ |𝑡 |−𝜈𝑧,

where 𝜈 and 𝑧 are the correlation length and dynamical critical exponents, respectively. The

scaling form of dimensionless observables such as the Binder cumulant therefore reads

𝑈𝑚 (𝑟, 𝐿, 𝐿𝜏) = 𝑈̃𝑚 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧) . (15)
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Here, 𝑈̃𝑚 is the scaling function. The clock order parameter 𝑚𝜙 at a conventional transition

fulfills the same scaling form [165],

𝑚𝜙 (𝑟, 𝐿, 𝐿𝜏) = 𝑚̃𝜙 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧) . (16)

However, these scaling forms are not expected to hold at a BKT transition at which

the correlation length depends exponentially on the distance from criticality, ln(𝜉𝑠) ∼ 𝑟−1/2

[102]. The exponential dependence is reflected in the scaling forms

𝑈𝑚 (𝑟, 𝐿, 𝐿𝜏) = 𝑈̃𝑚 (𝑟 log(𝐿/𝐿0)2, 𝐿𝜏/𝐿𝑧) , (17)

𝑚𝜙 (𝑟, 𝐿, 𝐿𝜏) = 𝑚̃𝜙 (𝑟 log(𝐿/𝐿0)2, 𝐿𝜏/𝐿𝑧) , (18)

where 𝐿0 is a microscopic length scale.

Certain quantum phase transitions and nonequilibrium phase transitions in disor-

dered systems feature exotic infinite-randomness critical points. Examples include the

random transverse-field Ising ferromagnet [95, 96], the superconductor-metal quantum

phase transition observed in thin nanowires [99, 100] and the disordered contact process

[166, 167, 168]. In the infinite-randomness scenario, the power-law dependence of 𝜉𝜏 on

𝜉𝑠 is replaced by an exponential (activated) scaling relation log(𝜉𝜏) ∼ 𝜉
𝜓
𝑠 , where 𝜓 is the

tunneling exponent. In such a scenario the scaling forms of𝑈𝑚 and 𝑚𝜙 are modified to read

𝑈𝑚 (𝑟, 𝐿, 𝐿𝜏) = 𝑈̃𝑚 (𝑟𝐿
1
𝜈 , log(𝐿𝜏/𝐿𝜏0)/𝐿𝜓) , (19)

𝑚𝜙 (𝑟, 𝐿, 𝐿𝜏) = 𝑚̃𝜙 (𝑟𝐿
1
𝜈 , log(𝐿𝜏/𝐿𝜏0)/𝐿𝜓) . (20)

The FSS of the clock order parameter and the Binder cumulant can be used to

find the transition temperatures 𝑇𝑐1 and 𝑇𝑐2, respectively. Focusing first on the Binder

cumulant, we follow the treatment elucidated in Ref. [169]. It is based on the fact that

𝑈𝑚 develops a maximum as a function of 𝐿𝜏 for fixed 𝐿 and 𝑇 . The position 𝐿max
𝜏 of
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this maximum characterizes the “optimal” sample shape at which the correlations extend

equally in both directions. Setting 𝐿𝜏 = 𝐿max
𝜏 fixes the second argument of the scaling

function 𝑈̃𝑚. Consequently, the peak value 𝑈max
𝑚 is independent of the system size 𝐿 at

criticality, 𝑟 = 0 (𝑇 = 𝑇𝑐2). Moreover, for the case of power-law dynamical scaling, one

gets a scaling collapse of the Binder cumulant at 𝑟 = 0 as a function of 𝐿𝜏/𝐿max
𝜏 . If the

dynamical scaling is instead of the activated type, a data collapse obtains if𝑈𝑚 is plotted as

a function of the variable log (𝐿𝜏)/log (𝐿max
𝜏 ). The clock order parameter can be analyzed

in the same way to find the transition between the TLRO and QLRO phases at 𝑇𝑐1.

Further information about the phase transitions can be gained from the finite-size

dependence of the disorder-averaged magnetization right at the transition point. At a con-

ventional phase transition, it is expected to follow a power-law form and often characterized

by means of the critical exponent combination 𝛽/𝜈,

𝑚(𝑇𝑐, 𝐿) ∼ 𝐿−𝛽/𝜈 (21)

where 𝛽 is the order parameter exponent. 𝛽/𝜈 can be connected to the anomalous (corre-

lation function) exponent 𝜂 via a scaling relation which reads 𝜂 = 2 − 𝑑 − 𝑧 + 2𝛽/𝜈 in a

quantum system with 𝑑 space dimensions and dynamical exponent 𝑧. Thus, the finite-size

dependence of the magnetization can also be expressed as

𝑚(𝑇𝑐, 𝐿) ∼ 𝐿−(𝑑+𝑧−2+𝜂)/2 . (22)

This form is more convenient for BKT transitions for which 𝜈 is formally infinite, and 𝛽 is

not well defined as the order parameter vanishes on both sides of the transition.

For 𝑑 = 1 and 𝑧 = 1, eq. (22) reduces to the familiar relation 𝑚 ∼ 𝐿−
𝜂

2 which is

expected to hold in the entire QLRO phase and at the two BKT transitions at 𝑇𝑐1 and 𝑇𝑐2

[117, 158]. This allows us to extract the anomalous exponent 𝜂 at both 𝑇𝑐1 and 𝑇𝑐2 as

discussed in the Ref. [107]. In the absence of disorder, 𝜂 is known to take the value 1/4
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at the transition between the QLRO and paramagnetic phases at 𝑇𝑐2. On the other hand,

the theoretical estimate of the exponent at the transition between the TLRO and the QLRO

transition is 𝜂 = 4/𝑞2.

4. RESULTS AND DISCUSSIONS

In this section, we apply our simulation and data analysis techniques to the classical

Hamiltonian (2). We first study the clean, translationally invariant case to test our methods.

In Sec. 4.2, we establish the phase diagram of the disordered model. Finally, Sec. 4.3 and

Sec. 4.4 are devoted to the study of the critical behavior of the model in the weak and strong

disorder regimes, respectively.

4.1. CLEAN CASE

In order to identify the phase transitions of the clean (Δ = 0) 6-state clock Hamil-

tonian (2), we analyze the clock order parameter 𝑚𝜙 and the Binder cumulant 𝑈𝑚. Figure

4 depicts 𝑚𝜙 and 𝑈𝑚 as functions of the temperature 𝑇 for different system sizes 𝐿. As

the symmetry between the space and imaginary time directions is not broken in the clean

case, fixing the dynamical exponent at 𝑧 = 1, we use square, 𝐿 × 𝐿, samples. To extract

the transition temperatures 𝑇𝑐1, and 𝑇𝑐2, we find the crossing point 𝑇∗(𝐿) of the curves of

the relevant observable at two different system sizes, 𝐿 and 𝑎𝐿, where 𝑎 is a constant. (We

employ 𝑎 =
√

2 in the following.) The crossing points shift as a function of system size

because of corrections to scaling. At a BKT transition, this shift is expected to follow the

functional form [158]

𝑇∗(𝐿) − 𝑇𝑐 ∼ (ln 𝐿)−2 . (23)

Here, 𝑇𝑐 is the corresponding asymptotic critical temperature (𝑇𝑐1 for the crossings of 𝑚𝜙

and 𝑇𝑐2 for the crossings of 𝑈𝑚). The extrapolations of 𝑇∗(𝐿) to infinite system size are

shown in Fig. 5, they yield 𝑇𝑐1 = 0.695(8) and 𝑇𝑐2 = 0.895(8).
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Figure 4. Clock order parameter 𝑚𝜙 and Binder cumulant𝑈𝑚 of the clean system (Δ = 0)
as functions of temperature 𝑇 for several linear system sizes 𝐿. The statistical errors are
smaller than the symbol size. The critical temperatures 𝑇𝑐1, 𝑇𝑐2 can be determined from

intersections of 𝑚𝜙 and𝑈𝑚 curves, respectively. Corrections to finite-size scaling
systematically shift the intersection point 𝑇∗.
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Figure 5. Extrapolation of the crossing temperatures 𝑇∗(𝐿) of 𝑚𝜙 (bottom, blue) and𝑈𝑚
(top, red) in the clean case to infinite system size. The transition temperatures are obtained

as the intercepts on the y-axis from fits using 𝑇∗(𝐿) = 𝑇𝑐 + 𝐴(ln 𝐿)−2, yielding
𝑇𝑐1 = 0.695(8) and 𝑇𝑐2 = 0.895(8). The insets show 𝑚𝜙 (left) and𝑈𝑚 (right) close to the

respective transitions.

Alternatively, we can lay recourse to the helicity modulus 𝜌𝑠 to extract the transition

temperatures 𝑇𝑐1 and 𝑇𝑐2. As the clean system is isotropic, implying 𝜌𝜏 = 𝜌𝑠, we only

compute the spatial helicity modulus 𝜌𝑠. Our simulation results for 𝜌𝑠 (𝜋) are shown in

Fig. 6 as functions of temperature for various system sizes. Because we employ a twist of

Θ = 𝜋, we use the modified Jose-Kadanoff and Kosterlitz-Nelson relations, as discussed

in Sec. 3.2. Due to the presence of finite size corrections, these lines do not intersect

with the helicity modulus curves at a single point. Instead, there is a systematic shift of

the intersection points with 𝐿. The critical temperatures are obtained by extrapolating the

intersection temperatures 𝑇∗(𝐿) to the thermodynamic limit according to Eq. (23). From

the fits, we obtain 𝑇𝑐1 = 0.707(2) and 𝑇𝑐2 = 0.895(6), which agrees with the results from
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Figure 6. Helicity modulus 𝜌𝑠 for twist angle Θ = 𝜋 vs. temperature 𝑇 for different linear
system sizes 𝐿 in the clean case, Δ = 0. The solid (black) line corresponds to the modified

Jose-Kadanoff relation 𝜌𝑠 = 𝑇 (𝑞2/8𝜋 − 2 ln 2/𝜋2), and the dashed (red) line depicts the
modified Kosterlitz-Nelson relation 𝜌𝑠 = 𝑇 (2/𝜋 − 2 ln 2/𝜋2). The critical temperatures are
obtained by extrapolating the crossing temperatures 𝑇∗(𝐿) between these lines and the data
to 𝐿 → ∞ according to the BKT ansatz (23). We find 𝑇𝑐1 = 0.707(2) and 𝑇𝑐2 = 0.895(6).

𝑚𝜙 and𝑈𝑚. Moreover, these transition temperatures also agree reasonably well with recent

high-accuracy results for the clean 6-state clock model in the literature, see, e.g., Table I in

Ref. [124] 10

10Some of the recent studies of the clean 6-state clock model quote very tight error bars for 𝑇𝑐1 and 𝑇𝑐2.
Note, however, that the error bars of different results often do not overlap, casting some doubt on the precision
of at least some of the estimates.
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4.2. DISORDERED CASE: PHASE DIAGRAM

We now turn our attention to the disordered clock model (Δ > 0). We first study

the specific heat as it is sensitive to all phase transitions in the system. Figure 7(a) presents

the specific heat 𝐶 for various disorder strengths as a function of temperature for a fixed

system of size 𝐿 = 𝐿𝜏 = 128. In the clean limit, Δ = 0, the specific heat clearly displays a

double peak structure indicative of two phase transitions at 𝑇𝑐1 and 𝑇𝑐2, identified in Sec.

4.1. Note that the specific heat at a BKT transition features only a weak (unobservable)

essential singularity right at𝑇𝑐, but a broad peak appears slightly above𝑇𝑐 due to the entropy

release from the vortex-pair unbinding. Thus, the peak positions in Fig. 7(a) do not exactly

coincide with the transition temperatures. The BKT character of the transition also implies

that the specific heat shows only weak system-size effects. We have explicitly confirmed

that the specific heat for 𝐿 = 𝐿𝜏 = 256 is almost identical to the result for 𝐿 = 𝐿𝜏 = 128

presented in the figure. The absence of a specific heat divergence at 𝑇𝑐 is in line with the

Harris criterion [93], as will be discussed in more detail in Sec. 4.3.

With increasing disorder strength Δ, the two peaks in the specific heat curves come

closer to each other, indicating the shrinking and potential destruction of the QLRO phase.

The behavior of the specific heat is mirrored by the behavior of the magnetization 𝑚 in

Fig. 7(b): For zero and weak disorder, we see a shoulder-like feature indicative of the

intermediate QLRO phase [110]. This feature shrinks and disappears with increasing

disorder strength, indicating the loss of the QLRO phase.

To construct the temperature-disorder phase diagram of the disordered clock model

(2) quantitatively, we lay recourse to the methods employed for the clean case in Sec. 4.1,

i.e., we determine the phase transition temperatures from the behavior of𝑚𝜙,𝑈𝑚, 𝜌𝑠, and 𝜌𝜏.

A prototypical example for the analysis of 𝑚𝜙 and𝑈𝑚 in the disordered case is presented in

Fig. 8 for Δ = 0.3. It gives the transition temperatures 𝑇𝑐1 = 0.530(5) and 𝑇𝑐2 = 0.625(10).

The helicity moduli can also be used to glean 𝑇𝑐1, and 𝑇𝑐2. In the presence of disorder, 𝜌𝑠

and 𝜌𝜏 are not identical anymore. As discussed in Sec. 3.2, we therefore need to analyze the
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Figure 7. Specific heat 𝐶 (a) and magnetization 𝑚 (b) vs. temperature 𝑇 for different
disorder strengths Δ and linear system size 𝐿 = 𝐿𝜏 = 128. The temperature region between
the two peaks gets narrower as the disorder increases, and the shoulder in 𝑚(𝑇) vanishes.
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Figure 8. Extrapolation of crossing temperatures 𝑇∗(𝐿) of 𝑚𝜙 (bottom, blue) and𝑈𝑚 (top,
red) for different system sizes and disorder strength Δ = 0.3. The transition temperatures

are obtained as the 𝑦-intercepts from fits using 𝑇∗(𝐿) = 𝑇𝑐 + 𝐴(ln 𝐿)−2. These yield
𝑇𝑐1 = 0.530(5) and 𝑇𝑐2 = 0.625(10). The insets show 𝑚𝜙 (left) and𝑈𝑚 (right) close to the

respective transitions.

Luttinger parameter or, equivalently, the geometric mean √
𝜌𝑠𝜌𝜏. A representative example

for the same disorder strength Δ = 0.3 is shown in Fig. 9. We find 𝑇𝑐1 = 0.53(1) and

𝑇𝑐2 = 0.63(1) for Δ = 0.3 from the extrapolations using Eq. (23). These values agree with

those obtained from the clock order parameter 𝑚𝜙 and the Binder cumulant𝑈𝑚 within their

error bars.

The full phase diagram is obtained by repeating these procedures for various disorder

strengths. For weak disorder up to Δ = 0.5, we use square samples 𝐿 = 𝐿𝜏. In the context

of finite-size scaling, this assumes a dynamical exponent of 𝑧 = 1 which will be confirmed

in Sec. 4.3. For stronger disorder, we perform the full anisotropic scaling analysis discussed

in Sec. 3.3 to determine the optimal shapes and the corresponding dynamical or tunneling

exponent (see also Sec. 4.4). The phase diagram resulting from this analysis is shown in
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Figure 9. Helicity modulus combination √
𝜌𝑠𝜌𝜏 vs. temperature 𝑇 for different system

sizes 𝐿 at disorder strength Δ = 0.3. Both 𝜌𝑠 and 𝜌𝜏 have been corrected according to Eq.
(14). The solid (black) line shows the Jose-Kadanoff relation √

𝜌𝑠𝜌𝜏 = 𝑇𝑞
2/8𝜋, and the

dashed (red) line depicts the Kosterlitz-Nelson relation √
𝜌𝑠𝜌𝜏 = 2𝑇/𝜋. 𝑇𝑐1 and 𝑇𝑐2 are

determined by extrapolating the intersections of these lines with the data according to Eq.
(23), resulting in 𝑇𝑐1 = 0.53(1) and 𝑇𝑐2 = 0.63(1).

Fig. 10. In line with our expectations gleaned from the study of the specific heat 𝐶 and the

magnetization𝑚, we see that the intermediate QLRO phase shrinks with increasing disorder

strength Δ. This means, the phase transitions at 𝑇𝑐1 and 𝑇𝑐2 come closer to each other as the

Δ increases and finally merge at a multicritical point 11. We estimate the multicritical point
11Thermodynamic considerations can restrict the possible topologies of phased diagrams with multicritical

points [170]. In the case of the disordered clock model, the weak, essential singularity of the free energy at
the BKT transitions at 𝑇𝑐1 and 𝑇𝑐2 makes the multicritical point thermodynamically possible.
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Figure 10. Phase diagram of the disordered 6-state clock model (2). The transition
between the TLRO and QLRO phases occurs at 𝑇𝑐1 (red squares), the transition between
the QLRO and paramagnetic phase occurs at 𝑇𝑐2 (blue triangles), and the direct transition

between the TLRO and paramagnetic phases is denoted by 𝑇𝑐 (brown circles). The
multicritical point is located somewhere in the shaded region, near Δ = 0.5, where 𝑇𝑐1 and

𝑇𝑐2 merge. The lines are guides to the eye only.

to be located at Δ ≈ 0.5; a more accurate determination is hampered by strong finite-size

effects due to the crossovers between the different critical behaviors. Qualitatively, the

phase diagram matches with the expectation sketched in Fig. 2.

4.3. CRITICAL BEHAVIOR IN THE WEAK-DISORDER REGIME

The correlation length exponent 𝜈 of a BKT transition is formally infinite and thus

fulfills the Harris criterion 𝑑𝜈 > 2 [93]. Correspondingly, the specific heat exponent 𝛼,

obtained from the scaling relation 2−𝛼 = 𝑑𝜈 is formally −∞, in agreement with the missing

specific heat divergence discussed after Fig. 7. The Harris criterion thus implies that the
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Figure 11. Correlation length 𝜉𝑠 in space direction vs. correlation length 𝜉𝜏 in
imaginary-time direction near 𝑇𝑐2 for several disorder strengths Δ. The solid lines are fits
to 𝜉𝜏 = 𝐴𝜉𝑧𝑠 . Inset: Estimate of dynamical exponent 𝑧 as a function of Δ. The dashed line

denotes the clean critical value 𝑧 = 1

critical behaviors of both transitions are expected to agree with the corresponding clean

critical behaviors for sufficiently weak disorder. However, the Harris criterion does not

forbid a change of critical behavior for stronger disorder.

We start by analyzing the dynamical scaling at the transition between the QLRO

and paramagnetic phases. To this end, we study the relation between the spatial correlation

length 𝜉𝑠 and the imaginary time correlation length 𝜉𝜏. Figure 11 presents 𝜉𝜏 as a function

of 𝜉𝑠 for various disorder strengths at 𝑇𝑐2. The data follow the power-law form 𝜉𝜏 ∼ 𝜉𝑧𝑠

expected for conventional dynamical scaling. The estimates of the dynamical exponent 𝑧

that results from fits to this functional form are shown in the inset of the figure. For all
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disorder strengths below the putative multicritical disorder Δ ≈ 0.5, the 𝑧 values remain at

or very close to the clean value 𝑧 = 1. We believe that the small deviations can be attributed

to finite-size effects in combination with the crossover induced by the multicritical point
12. The fact that the dynamical exponent remains at 𝑧 = 1 at the transition between the

QLRO and paramagnetic phases agrees with the analogous result for the disordered (1+1)-

dimensional quantum rotor model [152]. The fitted values of 𝑧 for Δ ⪆ 0.5 need to be

understood as effective exponents as the behavior for these disorder strengths is strongly

affected by the multi-critical point and the crossover between the weak and strong disorder

regimes.

To investigate the dynamical scaling at the transition between the TLRO and QLRO

phases, we perform the anisotropic finite-size scaling analysis of the clock order parameter

𝑚𝜙, as discussed in Sec. 3.3. This means we compute 𝑚𝜙 as a function of 𝐿𝜏 for fixed 𝐿

right at the critical temperature 𝑇𝑐1. A prototypical scaling plot of 𝑚𝜙/𝑚max
𝜙

vs. 𝐿𝜏/𝐿max
𝜏

for disorder strength Δ = 0.4 is presented in Fig. 12. The data for other disorder strengths

below the multicritical point are expected to behave analogously. As is evident from the

figure, the scaling collapse in accordance with the conventional scaling ansatz (16) is very

good, whereas the data do not collapse when analyzed according to the activated scaling

ansatz (20), as shown in the top inset. This demonstrates that the dynamical scaling is

of a power-law type. An estimate of the the dynamical exponent 𝑧 can be extracted from

fitting the 𝐿max
𝜏 vs. 𝐿 data shown in the bottom inset in Fig. 12 with 𝐿max

𝜏 = 𝑎𝐿𝑧. This

again yields a value very close to 𝑧 = 1. As above, we believe that the small deviation from

unity is caused by finite-size effects. We thus conclude that the dynamical scaling at both
12The finite size effects stem, at least partially, from the fact that 𝜉𝑠 and 𝜉𝜏 are finite-size correlation

lengths. Extrapolating them to infinite system size should mitigate the finite-size effects. We have attempted
to estimate the bulk correlation lengths, 𝜉∞𝑠 , 𝜉∞𝜏 , following the protocol described in Ref. [171]. Unfortunately,
the accumulation of errors during this procedure demands very high accuracy input data beyond our numerical
capabilities.
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Figure 12. Anisotropic finite-size scaling of the clock order parameter 𝑚𝜙 near
𝑇𝑐1 ≈ 0.485 at Δ = 0.4 using the power-law (conventional) scaling ansatz. Top inset: Same
data analyzed using the activated scaling ansatz. Bottom inset: log(𝐿) vs log(𝐿max

𝜏 ), the
straight line represents a fit with 𝐿max

𝜏 = 𝐴𝐿𝑧. It yields 𝑧 = 1.04(2).

transitions below the multicritical disorder strength is of conventional power law type, and

the (asymptotic) dynamical exponent retains the value 𝑧 = 1, justifying the use of square

samples in the rest of the simulations in the weak-disorder regime.

We now turn to measuring the anomalous exponent 𝜂. Figures 13(a) and 13(b) show

the dependence of the magnetization 𝑚 on the system size at 𝑇𝑐1 and 𝑇𝑐2, respectively, for a

range of disorder strengths. The data at both transitions agree very well with the expected

power-law form (22). Using 𝑑 = 𝑧 = 1, Eq. (22) turns into the relation 𝑚 ∼ 𝐿−𝜂/2. The

anomalous exponents 𝜂 are extracted from fits of the data with this functional form, and

their values are shown in the inset of Fig. 13(a) as functions of the disorder strength Δ.

The behavior of 𝜂 at the QLRO-to-paramagnetic transition is interesting. As the disorder

strength Δ is increased from zero, 𝜂 initially remains at its clean value (which is somewhat

below the theoretical expectation of 1/4, likely due to finite-size effects). For Δ ⪆ 0.3,
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Figure 13. Magnetization 𝑚 vs. system size 𝐿 at (a) 𝑇𝑐1 and (b) 𝑇𝑐2. The solid lines are fits
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in contrast, 𝜂 decreases significantly and displays a prominent disorder dependence. This

decrease in 𝜂 is reminiscent of the behavior observed in a disordered (1 + 1)-dimensional

XY model [152]. Our numerical accuracy is not sufficient to determine whether the change

of 𝜂 with Δ is a smooth crossover or a sharp transition somewhere around Δ = 0.3.

The anomalous exponent at the TLRO-to-QLRO transition at 𝑇𝑐1 also remains at

its clean value for the weak disorder. For Δ ⪆ 0.3, it rises slightly, but the increase is

minuscule, smaller than the error bars. With the current numerical accuracy, we therefore

cannot determine with certainty whether this exponent becomes disorder-dependent before

the multicritical point is reached.

Finally, we confirm the BKT character of the paramagnetic-to-QLRO phase transi-

tion at 𝑇𝑐2 by studying the dependence of the correlation length 𝜉𝑠 on the distance from the

transition point. Close to a BKT transition, 𝜉𝑠 is expected to follow the functional form

𝜉𝑠 = 𝐴𝑒
𝐵(𝑇−𝑇𝑐2)−1/2

. (24)

Here, 𝐴 and 𝐵 are non-universal constants. In Fig. 14, we plot the correlation length 𝜉𝑠 as a

function of temperature in the paramagnetic phase for various system sizes at Δ = 0.3. The

figure shows that 𝜉𝑠 follows the predicted exponential form until finite-size effects take over

close to the transition point.

4.4. CRITICAL BEHAVIOR IN THE STRONG-DISORDER REGIME

We now turn our attention to the strong-disorder regime, i.e., disorder strengths

above the multicritical value Δ ≈ 0.5, where the system features a direct transition between

the TLRO and paramagnetic phases. To explore this region, we have performed simulations

for several disorder strengths, viz., Δ = 0.7, 1.0, 1.5 and 2.0. Based on the SDRG of

Senthil and Majumdar [153], the critical behavior at sufficiently large Δ is expected to be of

the infinite-randomness type with activated rather than conventional power-law dynamical
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Figure 14. Spatial correlation length 𝜉𝑠 vs. temperature 𝑇 in the paramagnetic phase for
Δ = 0.3. The solid line is a fit of the data for the largest system size with the BKT form

(24) in the temperature range from 0.73 to 0.9. The value of 𝑇𝑐2 is fixed at 0.625, as found
via the Binder cumulant crossings in Fig. 8.

scaling. To test this prediction, we perform the anisotropic FSS analysis discussed in Sec.

3.3. The results are shown in Fig. 15 for the prototypical case of Δ = 1.5. To find the

critical temperature 𝑇𝑐, we use the fact that the 𝑚𝜙 vs. 𝐿𝜏 curve (at fixed 𝐿 and 𝑇) develops

a maximum at 𝐿max
𝜏 which marks the “optimal shape” that keeps the second argument of

the scaling functions in Eqs. (15) to (20) constant. The value of 𝑚𝜙 at the maximum is

independent of the system size 𝐿 right at criticality [169, 172], as is the case in Fig. 15(b).

In contrast, this maximum value increases with 𝐿 for 𝑇 < 𝑇𝑐 as illustrated in Fig. 15(a),

whereas it decreases with 𝐿 for 𝑇 > 𝑇𝑐, see Fig. 15(c). Following this methodology, we

estimate the transition temperatures to be 0.380(6), 0.294(6), 0.200(8), and 0.140(10) for

Δ = 0.7, 1.0, 1.5 and 2.0, respectively.
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Figure 15. Clock order parameter 𝑚𝜙 as a function of the imaginary-time system size 𝐿𝜏
for different spatial system sizes 𝐿 and disorder strength Δ = 1.5. The temperatures are (a)
𝑇 = 0.196 < 𝑇𝑐, (b) 𝑇 = 0.200 ≈ 𝑇𝑐 and (c) 𝑇 = 0.208 > 𝑇𝑐. The peak values of 𝑚𝜙 are
independent of 𝐿 at 𝑇𝑐 whereas they decrease with 𝐿 for 𝑇 > 𝑇𝑐 and increase with 𝐿 for

𝑇 < 𝑇𝑐. The statistical errors are of the order of the symbol size or smaller.

To distinguish conventional power-law dynamical scaling from activated dynamical

scaling, we investigate the scaling collapse of the 𝑚𝜙 vs. 𝐿𝜏 curves for Δ = 1.5 in Fig.

16. The figure clearly shows that the data collapses very well when plotted according to

the activated scaling ansatz (20). Small deviations from perfect collapse for the smallest

system sizes can be attributed to corrections to scaling stemming from the crossover towards

infinite-randomness criticality. In contrast, the data do not collapse when plotted according

to the conventional power-law scaling ansatz (16) but rather broaden with increasing system

size. We therefore conclude that the critical behavior is of infinite-randomness type. We

have repeated this analysis for Δ = 1.0, and 2.0, with analogous results. The data collapse

using the activated scaling scenario gets increasingly better, and extends to smaller system

sizes as the disorder strength increases. This implies the presence of a cross-over length

scale which decreases with increasing disorder strength.

To compare the critical behavior quantitatively with the predictions of Senthil and

Majumdar [153], we analyze the dependence of 𝐿max
𝜏 on 𝐿 in Fig. 17. The figure shows

that the data follow the predicted activated scaling relation log(𝐿𝑚𝑎𝑥𝜏 ) ∼ 𝐿𝜓 with 𝜓 = 1/2

for all disorder strengths we studied in the strong-disorder regime, provided the system

size is larger than a disorder-dependent crossover length scale. Specifically, the data for

the strongest disorders, Δ = 2.0 and 1.5, follow the infinite-randomness prediction for all
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Figure 16. Scaling plot of 𝑚𝜙/𝑚max
𝜙

vs. log(𝐿𝜏)/log(𝐿max
𝜏 ) at the critical temperature for

Δ = 1.5 according to the activated scaling ansatz (20). The dashed lines represent the data
of the smallest system sizes which do not collapse perfectly due to the corrections to

scaling. Inset: Same data plotted according to the power-law scaling ansatz (16). The data
do not collapse onto each other but broaden with increasing system size.

𝐿 ≥ 20. The Δ = 1 data follow the prediction for 𝐿 ≥ 56, whereas the data for the weakest

disorder, Δ = 0.7, only follow the prediction if 𝐿 ≥ 80. This shows that the cross-over

length scale increases with decreasing disorder (as the multicritical point is approached).

Finally, we analyze the system-size dependence of the average magnetization at

criticality (using the optimal shapes, i.e., 𝐿𝜏 = 𝐿max
𝜏 ). Figure 18 shows that the data for

disorder strengths Δ ≥ 1.0 follow the SDRG prediction 𝑚 ∼ 𝐿−𝛽/𝜈 with critical exponent

𝛽/𝜈 = 0.19 for system sizes above a crossover scale that increases rapidly with decreasing

disorder. The data for the weakest disorder we study in this regime, Δ = 0.7, show the

beginning of a crossover (manifest in the small downward curvature of the curve with

increasing 𝐿), but the crossover length appears to be larger than the maximum system size
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Figure 17. log(𝐿max
𝜏 ) vs. 𝐿0.5 at criticality for several disorder strengths in the

strong-disorder regime. The solid lines are fits with the activated scaling relation
log(𝐿max

𝜏 ) = 𝑎 + 𝑏𝐿𝜓 . Here 𝜓 is fixed at the theoretical value of 0.5, and 𝑎 and 𝑏 are fit
parameters. The dotted lines mark smaller system sizes that are not included in the fits.

in our simulations. This implies that a power-law fit of the data for Δ = 0.7 would only

yield an effective (𝐿-dependent) exponent value rather than the true asymptotic exponent

(analogous to a fit of the Δ = 1.00 data for 𝐿 < 96).

We thus conclude that the magnetization data for Δ = 0.7 are compatible with the

infinite-randomness scenario predicted by the SDRG, but we cannot exclude a different

asymptotic behavior.

Within the infinite-randomness scenario, the critical point is expected to be accom-

panied by quantum Griffiths phases [95, 96, 97, 98, 99, 100] that feature non-universal

power-law singularities of observables not just at criticality but in an entire region around

the transition. In order to identify quantum Griffiths behavior in our simulations, we follow

the method employed in Ref. [91] and study the susceptibility 𝜒 as a function of 𝐿𝜏 for large

fixed 𝐿 close to (but not exactly at) the transition. For the original quantum Hamiltonian
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Figure 18. Average magnetization 𝑚 at criticality vs. system size 𝐿 for several disorder
strengths Δ in the strong disorder regime. Solid lines are fits with 𝑚 = 𝑎𝐿−

𝛽

𝜈 with 𝛽/𝜈 and
𝑎 fit parameters. The fits yield 𝛽/𝜈 = 0.19(1) for disorder strengths Δ ≥ 1.0. The dotted

lines mark smaller system sizes that are not included in the fits. The data for Δ = 0.7
(dashed line) do not appear to reach the asymptotic behavior for the available system sizes.

Thus, we do not show a power-law fit of these data .

(1), this corresponds to studying the temperature dependence of 𝜒 slightly off criticality.

Specifically, we compute 𝜒 for disorder strength Δ = 2.0, spatial system size 𝐿 = 800, and

temporal sizes 𝐿𝜏 = 10 to 80 in the temperature region from 𝑇 = 0.125 to 0.25. For a

range of temperatures close to 𝑇𝑐 = 0.14 (as found from the scaling analysis of 𝑚𝜙 above),

the susceptibility follows the expected non-universal power law 𝜒 ∼ 𝐿
1±1/𝑧′
𝜏 where 𝑧′ is

the Griffiths dynamical exponent. Within the infinite-randomness scenario, 𝑧′ is expected
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to diverge at 𝑇𝑐, leading to a linear relation between 𝜒 and 𝐿𝜏. Our simulation data do

not quite agree with this, they give 𝜒 ∼ 𝐿1.2
𝜏 at 𝑇 = 0.14. We attribute this deviation to

finite-size effects due to the relatively small 𝐿𝜏 values from 10 to 80 13.

It is interesting to compare our strong evidence for a Griffiths phase in the form

of non-universal power-law behavior of the susceptibility with the results of Ref. [173]

for the (2 + 1) dimensional disordered clock model. In Ref. [173], the evidence for the

very existence of the Griffiths phase is inconclusive because the data do not consistently

show non-universal power-law behavior. This may stem from the fact that the strengths

of Griffiths singularities decreases with increasing dimensionality [98, 174] implying that

stronger disorder and/or larger sizes may be necessary to see the Griffiths phase in (2 + 1)

dimensions.

5. CONCLUSION AND SUMMARY

In this manuscript, we have investigated the impact of quenched random disorder

on the phases and phase transitions of the one-dimensional quantum q-state clock model,

focusing on 𝑞 = 6 which serves as a test bed for all 𝑞 > 4 cases. To this end, we have

performed large-scale Monte Carlo simulations of a classical clock model with a perfectly

correlated (columnar) disorder that arises from the quantum-to-classical mapping of the

quantum model’s partition function. Our results have established that the disorder is inimical

to the emergent QLRO phase that separates the TLRO phase from the paramagnetic phase

in the clean system. Specifically, the intermediate QLRO phase shrinks with increasing

disorder strength, finally resulting in a multicritical point beyond which there is a direct

phase transition from the clock-ordered (TLRO) phase to the paramagnetic phase.
13In the Griffiths phase, the susceptibility contains a regular bulk contribution and the singular rare region

contribution that produces the Griffiths singularities. For small 𝐿𝜏 , corrections to the Griffiths physics
stemming from the regular part are still sizable.
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The bulk of our results were obtained using the power-law disorder distribution (3).

This distribution becomes arbitrarily broad (even on a logarithmic scale) for Δ → ∞, We

have tested the influence of the disorder distribution by performing simulations with a binary

distribution as implemented in Ref. [152]. In agreement with the expected universality of

the phase diagram, these simulations show the same shrinking of the QLRO phase with

increasing disorder strengths. However, the crossover to the strong disorder regime is

slower, and the asymptotic behavior is not reached for the numerically accessible system

sizes. We expect analogous behavior for other “less broad” distributions such as the box

distribution.

We have also characterized the critical behavior along the different phase boundaries

in the disorder-(classical) temperature phase diagram. In agreement with the Harris criterion

[93], the critical behaviors of the BKT transitions from the TLRO phase to the QLRO phase

as well as from the QLRO phase to the paramagnetic phase are stable against weak disorder.

As the disorder strength is increased, both transitions retain the BKT character with a

dynamical exponent 𝑧 = 1 all the way to the multicritical point (or, at least, close to it).

However, the anomalous exponent 𝜂 of the QLRO-to-paramagnet transition deviates from

its clean value and becomes disorder dependent, analogous to the behavior observed in

a disordered (1+1)-dimensional XY model [152]. For the TLRO-to-QLRO transition, in

contrast, the changes of 𝜂, if any, are small and within the error bars of our simulations.

For disorder strengths well above the multi-critical point, our results have demon-

strated that the critical behavior of the direct transition between the TLRO and paramagnetic

phases is of exotic infinite-randomness type and falls into the random transverse-field Ising

universality class, as predicted by the SDRG analysis of Ref. [153]. Our results have also

provided numerical evidence for a quantum Griffiths phase associated with the infinite-

randomness critical point.
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The critical behavior of the multi-critical point itself is difficult to determine numer-

ically because the crossovers between the three different critical behaviors on the adjacent

phase boundaries lead to a strong and complex finite-size correction. Resolving these with

a Monte Carlo approach would require significantly larger system sizes than we were able

to access in our simulations. The same also applies to the interesting question of whether

the infinite-randomness critical behavior takes over right after the disorder strength is in-

creased beyond its multicritical value. While our numerical data show no indication of an

intermediate regime between the multicritical point and infinite-randomness criticality at

the largest disorders, a complete analysis of the vicinity of the multicritical point remains a

task for the future.

Interesting questions arise for higher-dimensional quantum clock models and their

classical counterparts. The two-dimensional 𝑞-state quantum clock model and its three-

dimensional classical counterpart do not have an intermediate phase but a direct transition

from the clock-ordered phase to the paramagnetic phase. For 𝑞 ≥ 4, the critical point has an

emerging XY symmetry. However, this symmetry is broken down to a discrete 𝑍𝑞 symmetry

in the ordered phase by means of a dangerously irrelevant variable [135, 175, 176]. What

happens to this scenario in the presence of quenched disorder? A recent study employing a

numerical SDRG calculation concluded that the critical behavior is of the IRFP type [173].

As discussed in Sec. 4.4, the evidence for quantum Griffith behavior in the vicinity of the

transition was inconclusive. An investigation along the lines of our study may help address

this problem and potentially unravel surprising disorder-induced cross-over effects.

APPENDIX: QUANTUM TO CLASSICAL MAPPING

In this section, we discuss the quantum-to-classical mapping that relates the partition

function of a 𝑑-dimensional quantum system to that of a classical system in 𝐷 = 𝑑 + 1

dimensions. It is based on expressing the quantum partition function as a path integral in

(𝑑 + 1)-dimensional Euclidean space-time. This is formally always possible, e.g., via a
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Trotter decomposition of the partition function. However, the question of whether or not

the action of this path integral can be interpreted as a classical Hamiltonian in (𝑑 + 1) space

dimensions depends on the problem at hand. In some cases (including ours), the action

is real and leads to positive statistical weights. It can thus be understood as a classical

Hamiltonian. In other cases, such as the bosonic Hubbard model at non-integer filling, the

action leads to negative or complex weights and cannot be interpreted as the Hamiltonian

of a classical system [8, 177].

We now derive the mapping from the one-dimensional quantum clock Hamiltonian

(1) to the equivalent two-dimensional classical clock model (2). For simplicity, let us

consider the translational invariant case with 𝐽𝑙 = 𝐽 and ℎ𝑙 = ℎ. We rewrite the Hamiltonian

(1) in terms of generalized Pauli matrices as follows,

𝐻 = −𝐽
2

𝑁∑︁
𝑖

[
𝜏𝑖𝜏

†
𝑖+1 + 𝜏

†
𝑖
𝜏𝑖+1

]
− ℎ

2

𝑁∑︁
𝑖

[
Γ̂𝑖 + Γ̂

†
𝑖

]
= 𝐻0 + 𝐻1 .

(25)

The matrix forms of the clock operators 𝜏 and the shift operators Γ̂ in the clock state basis

|𝑝⟩ with 𝑝 = 0, . . . , 𝑞 − 1 are given by

𝜏 =

©­­­­­­­­­­­­«

1 0 0 · · · 0

0 𝜔 0 · · · 0

0 0 𝜔2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 𝜔(𝑞−1)

ª®®®®®®®®®®®®¬
(26)
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and

Γ̂ =

©­­­­­­­­­­­­«

0 1 0 · · · 0

0 0 1 · · · 0

0 0 . . . 1 0
...
...

...
. . .

...

1 0 0 · · · 0

ª®®®®®®®®®®®®¬
, (27)

where 𝜔 = 𝑒2𝜋𝑖/𝑞. In other words,

𝜏 |𝑝⟩ = 𝜔𝑝 |𝑝⟩ , (28)

Γ̂ |𝑝⟩ = | (𝑝 − 1) mod 𝑞⟩ . (29)

The clock and shift operators at a given lattice site satisfy the relations

𝜏𝑞 = 𝐼 = Γ̂𝑞 and 𝜏Γ̂ = 𝜔Γ̂𝜏 . (30)

The clock and shift operators commute at different sites.

Consider the partition function of the Hamiltonian (1) at a (quantum) temperature

𝑇 = 1/𝛽 14,

𝑍 = Tr
(
𝑒−𝛽𝐻

)
. (31)

The operator 𝑒−𝛽𝐻 can be regarded as the imaginary time evolution operator from imaginary

time 0 to 𝛽. Using the standard Trotter decomposition technique, we can decompose 𝑍 as

𝑍 = Tr(𝑒−Δ𝜏𝐻𝑒−Δ𝜏𝐻 . . . 𝑒−Δ𝜏𝐻︸                      ︷︷                      ︸
𝐿𝜏 times

)
(

where Δ𝜏 =
𝛽

𝐿𝜏

)
. (32)

14In this appendix, the inverse physical temperature of the quantum Hamiltonian (1) is denoted by 𝛽 while
that of the mapped classical system (2) is called 𝛽𝑐𝑙 .
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Here, 𝐿𝜏 is the number of time slices. Now, we use the completeness condition

𝐼 =
∑︁

{𝑝=0,1,...𝑞−1}
|𝑝⟩ ⟨𝑝 | (33)

with |𝑝⟩ = |𝑝1⟩
⊗

|𝑝2⟩
⊗

... |𝑝𝑁⟩. Imposing periodic boundary conditions in the imagi-

nary time direction |𝑝0⟩ = |𝑝𝐿𝜏 ⟩, the partition function can be expressed as

𝑍 =
∑︁
{𝑝𝜏}

〈
𝑝0 ��𝑒−Δ𝜏𝐻 �� 𝑝𝐿𝜏−1〉 〈

𝑝𝐿𝜏−1 ��𝑒−Δ𝜏𝐻 �� 𝑝𝐿𝜏−2〉
· · ·

〈
𝑝𝜏+1 ��𝑒−Δ𝜏𝐻 �� 𝑝𝜏〉 · · · 〈𝑝1 ��𝑒−Δ𝜏𝐻 �� 𝑝0〉 , (34)

where we have introduced, at each time step 𝜏, a complete set of states |𝑝𝜏⟩. We assume

that 𝐿𝜏 is large so that Δ𝜏 is small and further decompose

𝑒−Δ𝜏𝐻 = 𝑒−Δ𝜏(𝐻0+𝐻1) ≃ 𝑒−Δ𝜏𝐻0𝑒−Δ𝜏𝐻1 . (35)

Now, consider one such matrix element :

〈
𝑝𝜏+1 ��𝑒−Δ𝜏𝐻 �� 𝑝𝜏〉 ≃ 〈

𝑝𝜏+1 ��𝑒−Δ𝜏𝐻0𝑒−Δ𝜏𝐻1
�� 𝑝𝜏〉 . (36)

We note that |𝑝⟩ is an eigenstate of 𝜏 operator. Therefore

𝑒𝜏𝑖𝜏
†
𝑖+1 |𝑝𝑖𝑝𝑖+1⟩ = 𝑒𝜔

𝑝𝑖𝜔−𝑝𝑖+1 |𝑝𝑖𝑝𝑖+1⟩ and

𝑒𝜏
†
𝑖
𝜏𝑖+1 |𝑝𝑖𝑝𝑖+1⟩ = 𝑒𝜔

−𝑝𝑖𝜔𝑝𝑖+1 |𝑝𝑖𝑝𝑖+1⟩ .
(37)

We have

𝜔𝑝𝑖𝜔−𝑝𝑖+1 = 𝑒
2𝜋𝑖
𝑞

(𝑝𝑖−𝑝𝑖+1) and

𝜔−𝑝𝑖𝜔𝑝𝑖+1 = 𝑒
− 2𝜋𝑖

𝑞
(𝑝𝑖−𝑝𝑖+1) .

(38)
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From the above expressions, we can write

𝑒
2𝜋𝑖
𝑞

(𝑝𝑖−𝑝𝑖+1) + 𝑒−
2𝜋𝑖
𝑞

(𝑝𝑖−𝑝𝑖+1) = 2 cos
[
2𝜋
𝑞
(𝑝𝑖 − 𝑝𝑖+1)

]
. (39)

Hence, the matrix element can be written as

〈
𝑝𝜏+1 ��𝑒−Δ𝜏𝐻0𝑒−Δ𝜏𝐻1

�� 𝑝𝜏〉
=

〈
𝑝𝜏+1

���𝑒+𝐽Δ𝜏∑𝑁
𝑖 cos [ 2𝜋

𝑞
(𝑝𝜏+1
𝑖

−𝑝𝜏+1
𝑖+1 )]𝑒−Δ𝜏𝐻1

��� 𝑝𝜏〉 . (40)

Now, we act the remaining operator on the eigenstates. Consider

〈
𝑝𝜏+1 ��𝑒−Δ𝜏𝐻1

�� 𝑝𝜏〉
=

〈
𝑝𝜏+1

���𝑒+ ℎ2 Δ𝜏∑
𝑖 (Γ𝑖+Γ†

𝑖
)
��� 𝑝𝜏〉 . (41)

Let us assume 𝜃 = ℎ
2Δ𝜏. Then,

𝑒𝜃Γ =
∑︁
𝑛

(𝜃Γ)𝑛
𝑛!

. (42)

Here, we split the expansion into q different series as follows

𝑒𝜃Γ =
∑︁
𝑝

(𝜃Γ)𝑞𝑝
(𝑞𝑝)! +

∑︁
𝑝

(𝜃Γ)𝑞𝑝+1

(𝑞𝑝 + 1)! + ... +
∑︁
𝑝

(𝜃Γ)𝑞𝑝+𝑞−1

(𝑞𝑝 + 𝑞 − 1)! (43)

Using the identity Γ𝑞=I, the expansion simplifies to

𝑒𝜃Γ =
∑︁
𝑝

𝜃𝑞𝑝

(𝑞𝑝)! +
∑︁
𝑝

𝜃𝑞𝑝+1Γ

(𝑞𝑝 + 1)! + ... +
∑︁
𝑝

𝜃𝑞𝑝+𝑞−1Γ𝑞−1

(𝑞𝑝 + 𝑞 − 1)! ‘ (44)

which we represent as

𝑒𝜃Γ = 𝑓0(𝜃) + 𝑓1(𝜃)Γ + ... + 𝑓𝑞−1(𝜃)Γ𝑞−1 , (45)
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where we denote

𝑓𝑝−1(𝜃) = Λ𝑒𝛾𝜔
𝑝−1

. (46)

Now, let’s evaluate the following elements,

〈
𝑝𝜏+1 ��𝑒𝜃Γ�� 𝑝𝜏〉
=

〈
𝑝𝜏+1 �� 𝑓0(𝜃)𝐼 + 𝑓1(𝜃)Γ + ... + 𝑓𝑞−1(𝜃)Γ𝑞−1�� 𝑝𝜏〉

=



𝑓0(𝜃) if 𝑝𝜏+1 = 𝑝𝜏

𝑓1(𝜃) if 𝑝𝜏+1 = (𝑝𝜏 + 1)

...

𝑓𝑞−1(𝜃) if 𝑝𝜏+1 = (𝑝𝜏 + 𝑞 − 1)

=



Λ𝑒𝛾𝜔
0 if 𝑝𝜏+1 = 𝑝𝜏

Λ𝑒𝛾𝜔
1 if 𝑝𝜏+1 = (𝑝𝜏 + 1)

...

Λ𝑒𝛾𝜔
𝑞−1 if 𝑝𝜏+1 = (𝑝𝜏 + 𝑞 − 1)

= Λ𝑒𝛾𝜔
−(𝑝𝜏−𝑝𝜏+1 )

.

(47)

Similarly, 〈
𝑝𝜏+1

���𝑒𝜃Γ†
��� 𝑝𝜏〉 = Λ𝑒𝛾𝜔

(𝑝𝜏−𝑝𝜏+1 )
. (48)

Therefore, 〈
𝑝𝜏+1

���𝑒𝜃 (Γ+Γ†)
��� 𝑝𝜏〉

= Λ2𝑒𝛾𝜔
(𝑝𝜏−𝑝𝜏+1 )

𝑒𝛾𝜔
−(𝑝𝜏−𝑝𝜏+1 )

= Λ2𝑒
𝛾

[
𝑒

2𝜋𝑖
𝑞 (𝑝𝜏−𝑝𝜏+1 )+𝑒−

2𝜋𝑖
𝑞 (𝑝𝜏−𝑝𝜏+1 )

]

= Λ2𝑒
2𝛾

[
cos 2𝜋

𝑞
(𝑝𝜏−𝑝𝜏+1)

]
,

(49)
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which implies that,

〈
𝑝𝜏+1

���𝑒 ℎ2 Δ𝜏∑
𝑖 (Γ𝑖+Γ†

𝑖
)
��� 𝑝𝜏〉 = Λ2𝑁𝑒

2𝛾
∑𝑁
𝑖

[
cos 2𝜋

𝑞
(𝑝𝜏
𝑖
−𝑝𝜏+1

𝑖
)
]
. (50)

The partition function can be rewritten to the following form

𝑍 =Λ2𝑁𝐿𝜏𝑒
∑𝑁
𝑖

∑𝐿𝜏
𝜏 [𝐽Δ𝜏 cos [ 2𝜋

𝑞
(𝑝𝜏
𝑖
−𝑝𝜏

𝑖+1)]+2𝛾 cos [ 2𝜋
𝑞
(𝑝𝜏
𝑖
−𝑝𝜏+1

𝑖
)]]
. (51)

This is equivalent to the partition function of a two-dimensional classical clock model with

the following Hamiltonian:

𝐻cl = −
∑︁
𝑖,𝜏

𝐽𝑠 cos
[
2𝜋(𝑝𝑖,𝜏 − 𝑝𝑖+1,𝜏)

𝑞

]
−

∑︁
𝑖,𝜏

𝐽𝑡 cos
[
2𝜋(𝑝𝑖,𝜏 − 𝑝𝑖,𝜏+1)

𝑞

]
.

(52)

The couplings are connected via the relation

𝛽cl𝐽𝑠 = 𝐽Δ𝜏, 𝛽cl𝐽𝑡 = 2𝛾 . (53)

We have

𝑒
ℎ
2 Δ𝜏 = Λ


𝑞−1∑︁
𝑝=0

𝑒𝛾𝜔
𝑝

 and

𝑒−
ℎ
2 Δ𝜏 = Λ


𝑞−1∑︁
𝑝=0

(−1)𝑝𝑒𝛾𝜔𝑝
 .

(54)

Therefore the relation between ℎ and 𝛾 can be obtained as,

𝑒−ℎΔ𝜏 =

∑𝑞−1
𝑝=0(−1)𝑝𝑒𝛾𝜔𝑝∑𝑞−1

𝑝=0 𝑒
𝛾𝜔𝑝

. (55)
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For the case of the Ising model (𝑞 = 2), this reduces to

𝑒−ℎΔ𝜏 =
𝑒𝛾 − 𝑒−𝛾
𝑒𝛾 + 𝑒−𝛾 = tanh 𝛾 . (56)

Note that temperature is not the tuning parameter of the quantum phase transition in the

quantum Hamiltonian. However, changing the (inverse) classical temperature 𝛽cl in the

mapped classical model corresponds to changing ℎ/𝐽 in the quantum Hamiltonian. Thus,

universal properties of the quantum phase transitions in the quantum clock model can be

obtained from the finite temperature transitions of the corresponding 2D classical clock

model.
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SECTION

2. SUMMARY AND CONCLUSIONS

In this work, we investigated the effects of disorder on the critical behavior of various

magnetic systems using large-scale Monte Carlo simulations. We studied the interplay of

interactions, quenched disorder, thermal and quantum fluctuations and their effect on the

properties of the phase transitions. In this chapter, we summarize our findings and their

implications.

In Paper I, we studied site-diluted XY and Heisenberg models to help us understand

the phase diagram of diluted magnetic materials, specifically hexagonal ferrites. We ex-

plored the phase diagram assuming a percolation scenario as suggested by the experimental

observations. We confirmed the percolation theory predictions of the phase boundary in

the vicinity of percolation threshold, and also explored the pre-asymptotic region, by the

means of large-scale Monte Carlo simulations. Our results showed that the asymptotic

critical region is very narrow, and the pre-asymptotic phase boundary follows a different

dilution dependence than the experiments. This unusual behavior was later explained by

preferential dilution of a specific sub-lattice of the hexagonal ferrites [178].

In Paper II, we studied the effects of finite twists in the boundary conditions on a two-

dimensional classical XY model motivated by an unexpected difference of the simulation

results of the helicity modulus between infinitesimal and finite twists. We showed that

the thermodynamic ensemble is composed of a mixture of states with opposite chirality,

as a response to twisted boundary conditions. This mixing of states results in a reduction

of the free energy cost associated with a non-infinitesimal twist in the quasi-long-range

ordered phase. We also showed that a macroscopic system with the anti-periodic boundary

conditions in the quasi-long-range ordered phase spontaneously breaks the chiral symmetry.
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We provided an improved prescription for the numerical evaluation of the free energy, and

helicity modulus for a finite twist. These results and numerical methods are important

for discrete spin systems such as 𝑞-state clock model, where twists are unavoidably non-

infinitesimal. These results also have implications for experiments on planer magnets.

In Paper III, we studied phases and phase transitions in the disordered one-dimensional

quantum 𝑞-state clock model using large-scale Monte Carlo simulations. We showed that

the quasi-long-range ordered phase, which separates the long-range-ordered phase from the

paramagnetic phase, shrinks and vanishes in a multi-critical point as disorder strength is

increased. For disorder strengths above the multi-critical point, there is a direct transition be-

tween the long-range ordered phase and paramagnetic phases. We characterized the critical

behavior across all phase boundaries and confirmed the predictions of the strong-disorder

renormalization group theory. The transition between paramagnetic and quasi-long-range

ordered phases shows a weak-to-strong disorder crossover, similar to the case of disordered

bosons in one dimension [152]. For weak disorder, the transition between quasi-long-range

ordered and ordered phases belongs to the same universality class as the clean case. In the

strong disorder regime, beyond the multi-critical point, the critical behavior is same as the

random transverse field Ising model, i.e. infinite randomness type. In the vicinity of the

multi-critical point we also found the signatures of exotic quantum Griffiths phases.

To summarize, we presented in-depth analysis of disorder dependence on phases

and phase transitions in several systems. We showed that the disorder gives rise to a variety

of emergent behavior such as change of universality class, infinite randomness criticality,

Griffiths singularity, etc. This work enhances our understanding of the rich and complex

behavior of disordered magnetic systems, providing a motivation for future theoretical and

experimental investigations in condensed matter physics and quantum many-body systems.
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Going further than the simple models covered in this dissertation, one can include

effects of more complicated interactions, or realistic lattice structures. One can also inves-

tigate transport properties in the vicinity of phase transitions. These model calculations

coupled with first-principles calculations provide a detailed description of interplay of

interactions and fluctuations, to explain the experimental results.
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bauer investigation of PbFe12−𝑥Ga𝑥O19 hexagonal ferrites. J. Mat. Sci, 37(17):
3759–3763, Sep 2002. ISSN 1573-4803. doi: 10.1023/A:1016529812985. URL
https://doi.org/10.1023/A:1016529812985.

[29] Antonio Coniglio. Thermal phase transition of the dilute 𝑠-state potts
and 𝑛-vector models at the percolation threshold. Phys. Rev. Lett.,
46:250–253, Jan 1981. doi: 10.1103/PhysRevLett.46.250. URL
https://link.aps.org/doi/10.1103/PhysRevLett.46.250.

[30] T. Vojta and J. A. Hoyos. Quantum phase transitions on percolating lattices. In
J. Boronat, G. Astrakharchik, and F. Mazzanti, editors, Recent Progress in Many-Body
Theories, page 235. World Scientific, Singapore, 2008.

[31] Chuanjian Wu, Zhong Yu, Ke Sun, Jinlan Nie, Rongdi Guo, Hai Liu, Xiaona
Jiang, and Zhongwen Lan. Calculation of exchange integrals and curie tempera-
ture for la-substituted barium hexaferrites. Scientific Reports, 6:36200, 2016. doi:
10.1038/srep36200. URL http://dx.doi.org/10.1038/srep36200.

[32] EF Shender and BI Shklovskii. The curie temperature of dilute ferromagnetic alloys
near the percolation threshold. Physics Letters A, 55(2):77–78, 1975.
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