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Geometric percolation

• regular (square or cubic) lattice

• sites are occupied at random
site empty (vacancy) with probability p
site occupied with probability 1− p

Question: Do the occupied sites form a
connected infinite spanning cluster?

• sharp percolation threshold at pc

p > pc: only disconnected finite-size clusters
length scale: connectedness length ξc

p = pc: ξc diverges, clusters on all scales, clusters
are fractals with dimension Df < d

p < pc: infinite cluster covers finite fraction P∞
of sites

p > pc

p = pc

p < pc



Percolation as a critical phenomenon

• percolation can be understood as continuous phase transition

• geometric fluctuations take the role of usual thermal or quantum fluctuations

• concepts of scaling and critical exponents apply

cluster size distribution:
(number of clusters with s sites):

ns(p) = s−τcf [(p− pc) sσc]
scaling function f(x)

f(x) ∼ exp(−B1x
1/σc) (p > pc)

f(x) = const (p = pc)

f(x) ∼ exp[−(B2x
1/σc)1−1/d] (p < pc)

.

infinite cluster: P∞ ∼ |p−pc|βc (βc = (τc−2)/σc)

length scale : ξc ∼ |p−pc|−νc (νc = (τc−1)/dσc)

fractal dimension: Df = d/(τc − 1)

from Stauffer/Aharony
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Classical diluted magnet

H = −J
∑

〈i,j〉
εiεj SiSj − h

∑

i

εiSi

• Si − classical Ising or Heisenberg spin
• εi random variable, 0 with probability p, 1 with probability 1− p

Question:
Phase diagram as function of temperature T

and impurity concentration p?

p pc pp

T TT

pc pc
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Is a classical magnet on the critical percolation cluster ordered?

naive argument: fractal dimension Df > 1 ⇒ Ising magnet orders at low T

Wrong !!!

• critical percolation cluster contains red sites

• parts on both sides of red site can be flipped
with finite energy cost

⇒ no long-range order at any finite T ,
Tc(p) vanishes at percolation threshold

• fractal (mass) dimension Df not sufficient to
characterize magnetic order
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Percolation and quantum fluctuations

• quantum fluctuations are less effective in
destroying long-range order

• red sites ⇒ red lines, infinite at T = 0
• flipping cluster parts on both sides of

red line requires infinite energy

Long-range order survives on the
critical percolation cluster

(if quantum fluctuations are not too strong)

(confirmed by explicit results for quantum Ising and

Heisenberg magnets and for quantum rotors) t



Phase diagram of a diluted quantum magnet

Schematic phase diagram

p = impurity concentration
g = quantum fluctuation strength
T = temperature

(long-range order at T > 0 requires

d ≥ 2 for Ising and d ≥ 3 for Heisenberg

symmetry)

Two zero-temperature quantum phase transitions:

(a) generic quantum phase transition, driven by quantum fluctuations
(b) percolation quantum phase transition, driven by geometry of the lattice

transitions separated by multicritical point at (g∗, pc, T = 0)



Example: diluted bilayer Heisenberg antiferromagnet

H = J‖
∑
〈i,j〉

a=1,2

εiεjŜi,a · Ŝj,a + J⊥
∑

i

εiŜi,1 · Ŝi,2,

• Ŝj,a: quantum spin operator (S = 1/2) at site j, layer a

• ratio J⊥/J‖ controls strength of quantum fluctuations

• dilution: random variable εi=0,1 with probabilities p, 1− p.

Phase diagram mapped out by Sandvik (2002)

and Vajk and Greven (2002)
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Model action, order parameter, and correlation length

O(N) quantum rotor model (N ≥ 2)

A =
∫

dτ
∑

〈ij〉
JεiεjSi(τ) · Sj(τ) +

T

g

∑

i

∑
n

εi|ωn|2/z0Si(ωn)Si(−ωn)

Si(τ): N -component unit vector at site i and imaginary time τ
εi = 0, 1: random variable describing site dilution
z0: (bare) dynamical exponent of the clean system.

Order parameter (magnetization):

• magnetic long-range order only possible on infinite percolation cluster
• for g < g∗, infinite percolation cluster is ordered for all p < pc

⇒ magnetization m ∼ P∞ ∼ |p− pc|βc β = βc

Spatial correlation length:

• magnetic correlations cannot extend beyond connectedness length of the lattice
⇒ correlation length ξ ∼ ξc ∼ |p− pc|−νc ν = νc



Quantum dynamics of a single percolation cluster

single percolation cluster of s sites

• for g < g∗, all rotors on the cluster are
correlated but collectively fluctuate in time

⇒ cluster acts as single (0+1) dimensional
NLSM model with moment s

t

As = s
T

g

∑

i

∑
n

|ωn|2/z0S(ωn)S(−ωn) + sh

∫
dτS(1)(τ)

Dimensional analysis or renormalization group calculation:

Fs (g, h, T ) = gϕs−ϕΦ
(
hs1+ϕg−ϕ, T sϕg−ϕ

)
ϕ = z0/(2− z0)

• free energy of quantum spin cluster more singular than that of classical spin cluster

• susceptibility: classically χc
s ∼ s2, quantum (at T = 0): χs ∼ s2+ϕ

susceptibility of quantum cluster diverges faster with cluster size s



Scaling theory of the percolation quantum phase transition

• total free energy is sum over contributions of all percolation clusters

• combining percolation cluster size distribution + free energy of single cluster

F (p− pc, h, T ) =
∑

s ns(p− pc) Fs (g, h, T )

Scaling form of free energy:

• rescaling s → s/bDf yields

F (p− pc, h, T ) = b−(d+z)F
(
(p− pc)b1/ν, hb(Df+z), T bz

)

• correlation length exponent identical to the classical value, ν = νc

• z = ϕDf plays the role of the dynamic critical exponent.



Critical behavior

• exponents determined by two lattice
percolation exponents (e.g., ν = νc, Df)
and the dynamical exponent z

2− α = (d + z) ν

β = (d−Df) ν

γ = (2Df − d + z) ν

δ = (Df + z)/(d−Df)

2− η = 2Df − d + z .

• classical exponents recovered for z = 0:

• α, γ, δ, and η are nonclassical while β is
unchanged

T.V. + J. Schmalian, PRL 95, 237206 (2005)
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Exponents in 2D as function of z0.

2d 3d
classical quantum classical quantum

α −2/3 −115/36 −0.62 −2.83
β 5/36 5/36 0.417 0.417
γ 43/18 59/12 1.79 4.02
δ 91/5 182/5 5.38 10.76
ν 4/3 4/3 0.875 0.875
η 5/24 −27/16 −0.06 −2.59
z - 91/48 - 2.53

Exponents in 2d and 3d for z0 = 1.



Simulation and experiment

Diluted Heisenberg antiferromagnet
La2Cu1−x(Zn,Mg)xO4

• neutron scattering experiments
Vajk et al., Science 295, 1691, (2002)

• correlation length at p = pc

prediction ξ ∼ T−1/z

Monte-Carlo simulations

• FSS of Binder cumulant at p = pc

⇒ z ≈ 1.83
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Diluted transverse-field Ising model

HI = −J
∑

〈i,j〉
εiεjŜ

z
i Ŝz

j − hx

∑

i

εiŜ
x
i − hz

∑

i

εiŜ
z
i ,

• Ŝx,z
j : x and z components of quantum spin operator (S = 1/2) at site j

• hx: transverse magnetic field, controls strength of quantum fluctuations

• hz: ordering (longitudinal) magnetic field, conjugate to order parameter

• dilution: random variable εi=0,1 with probabilities p, 1− p.

single percolation cluster of s sites

• for small hx, all spins on the cluster are correlated but collectively fluctuate in time

• cluster of size s acts as (0+1) dimensional Ising model with moment s

• energy gap (inverse susceptibility) of cluster depends exponentially on size s

∆ ∼ χ−1
s ∼ hxe−Bs [B ∼ ln(J/hx)]



Activated scaling

• exponential relation between length and time scales: ln ξτ ∼ ln(1/∆) ∼ s ∼ ξDf

Activated scaling: ln ξτ ∼ ξDf

Scaling form of the magnetization at the percolation transition
(Senthil/Sachdev 96)

• sum over all percolation clusters using size distribution ns

m(p− pc, hz) = b−βc/νc m
(
(p− pc)b1/νc, ln(hz)b−Df

)

• at the percolation threshold p = pc: m ∼ [ln(hz)]2−τc

• for p 6= pc: power-law quantum Griffiths effects m ∼ hζ
z with nonuniversal ζ
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Dissipative transverse-field Ising model

• couple each spin to local bath of harmonic oscillators

H = HI +
∑

i,n

εi

[
νi,na†i,nai,n +

1
2
λi,nŜz

i (a†i,n + ai,n)
]

• a†i,n, ai,n: creation and destruction operator of the n-th oscillator coupled to spin i
• νi,n frequency of of the n-th oscillator coupled to spin i
• λi,n: coupling constant

Ohmic dissipation: spectral function of the baths is linear in frequency

E(ω) = π
∑

n

λ2
i,nδ(ω − νi,n)/νi,n = 2π α ωe−ω/ωc

α dimensionless dissipation strength
ωc cutoff energy



Phase diagram

• percolation cluster of size s equivalent
to dissipative two-level system with
effective dissipation strength sα

⇒ large clusters with sα > 1 freeze
small clusters with sα < 1 fluctuate

• frozen clusters act as classical superspins,
dominate low-temperature susceptibility

χ ∼ |p− pc|−γc/T

• magnetization of infinite cluster

m∞ ∼ P∞(p) ∼ |p− pc|β

• magnetization of finite-size frozen and
fluctuating clusters leads to unusual
hysteresis effects
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J. Hoyos and T.V., PRB 74, 140401(R) (2006)



Conclusions

• long-range order on critical percolation cluster is destroyed by thermal fluctuations
long-range order survives a nonzero amount of quantum fluctuations
⇒ permits percolation quantum phase transition

• critical behavior is controlled by lattice percolation exponents but it is
different from classical percolation

• in diluted quantum Ising magnets ⇒ exotic transition, activated scaling

• Ohmic dissipation: large percolation clusters freeze, act as superspins
⇒ classical superparamagnetic cluster phase

Interplay between geometric criticality and quantum fluctuations leads
to novel quantum phase transition universality classes


