Quantum phase transitions on percolating lattices

Thomas Vojta

Department of Physics, University of Missouri-Rolla

- Geometric percolation
- Classical magnet on a percolating lattice
 - Percolation quantum phase transitions
- Quantum Ising magnet and activated scaling
 - Percolation and dissipation

Acknowledgements

currently at UMR

Jose Hoyos

Chetan Kotabage Man Young Lee

Shellie Huether Ryan Kinney Brett Sweeney

former group members

Mark Dickison (Boston U.) Bernard Fendler (Florida State U.) Rastko Sknepnek (Iowa State U.)

external collaboration

Ribhu Kaul (Duke U.)

Jörg Schmalian (Iowa State U.)

Matthias Vojta (U. of Cologne)

Funding:

National Science Foundation Research Corporation University of Missouri Research Board

Geometric percolation

- regular (square or cubic) lattice
- sites are occupied at random site **empty** (vacancy) with probability p site **occupied** with probability 1-p

Question: Do the occupied sites form a connected infinite spanning cluster?

ullet sharp **percolation threshold** at p_c

 $p>p_c$: only disconnected finite-size clusters length scale: connectedness length ξ_c

 $p=p_c$: ξ_c diverges, clusters on all scales, clusters are **fractals** with dimension $D_f < d$

 $p < p_c$: infinite cluster covers finite fraction P_{∞} of sites

 $p > p_c$

$$p = p_c$$

$$p < p_c$$

Percolation as a critical phenomenon

- percolation can be understood as continuous phase transition
- geometric fluctuations take the role of usual thermal or quantum fluctuations
- concepts of scaling and critical exponents apply

cluster size distribution:

(number of clusters with s sites):

$$n_s(p) = s^{-\tau_c} f \left[(p - p_c) s^{\sigma_c} \right]$$

scaling function f(x)

$$f(x) \sim \exp(-B_1 x^{1/\sigma_c})$$
 $(p > p_c)$
 $f(x) = \text{const}$ $(p = p_c)$.
 $f(x) \sim \exp[-(B_2 x^{1/\sigma_c})^{1-1/d}]$ $(p < p_c)$

infinite cluster: $P_{\infty} \sim |p-p_c|^{\beta_c}$ $(\beta_c = (\tau_c-2)/\sigma_c)$

length scale: $\xi_c \sim |p-p_c|^{-\nu_c}$ $(\nu_c = (\tau_c-1)/d\sigma_c)$

fractal dimension: $D_f = d/(\tau_c - 1)$

from Stauffer/Aharony

- Geometric percolation
- Classical magnet on a percolating lattice
 - Percolation quantum phase transitions
- Quantum Ising magnet and activated scaling
 - Percolation and dissipation

Classical diluted magnet

$$H = -J \sum_{\langle i,j \rangle} \epsilon_i \epsilon_j \, S_i S_j - h \sum_i \epsilon_i S_i$$

- \bullet S_i classical Ising or Heisenberg spin
- \bullet ϵ_i random variable, 0 with probability p, 1 with probability 1-p

Question:

Phase diagram as function of temperature T and impurity concentration p?

Is a classical magnet on the critical percolation cluster ordered?

naive argument: fractal dimension $D_f > 1 \implies \text{Ising magnet orders at low } T$

Wrong !!!

- critical percolation cluster contains red sites
- parts on both sides of red site can be flipped with finite energy cost
- \Rightarrow no long-range order at any finite T, $T_c(p)$ vanishes at percolation threshold
- fractal (mass) dimension D_f not sufficient to characterize magnetic order

- Geometric percolation
- Classical magnet on a percolating lattice
- Percolation quantum phase transitions
- Quantum Ising magnet and activated scaling
 - Percolation and dissipation

Percolation and quantum fluctuations

- quantum fluctuations are less effective in destroying long-range order
- red sites \Rightarrow red lines, infinite at T=0
- flipping cluster parts on both sides of red line requires infinite energy

Long-range order survives on the critical percolation cluster

(if quantum fluctuations are not too strong)

(confirmed by explicit results for quantum Ising and Heisenberg magnets and for quantum rotors)

Phase diagram of a diluted quantum magnet

Schematic phase diagram

p = impurity concentration

g = quantum fluctuation strength

T = temperature

(long-range order at T>0 requires $d\geq 2$ for Ising and $d\geq 3$ for Heisenberg symmetry)

Two zero-temperature quantum phase transitions:

- (a) generic quantum phase transition, driven by quantum fluctuations
- (b) percolation quantum phase transition, driven by geometry of the lattice

transitions separated by multicritical point at $(g^*, p_c, T = 0)$

Example: diluted bilayer Heisenberg antiferromagnet

$$H = J_{\parallel} \sum_{\substack{\langle i,j \rangle \\ a=1,2}} \epsilon_{i} \epsilon_{j} \hat{\mathbf{S}}_{i,a} \cdot \hat{\mathbf{S}}_{j,a} + J_{\perp} \sum_{i} \epsilon_{i} \hat{\mathbf{S}}_{i,1} \cdot \hat{\mathbf{S}}_{i,2},$$

- \bullet $\hat{\mathbf{S}}_{j,a}$: quantum spin operator (S=1/2) at site j, layer a
- ullet ratio J_{\perp}/J_{\parallel} controls strength of **quantum** fluctuations
- dilution: random variable $\epsilon_i = 0,1$ with probabilities p, 1-p.

Phase diagram mapped out by Sandvik (2002) and Vajk and Greven (2002)

Model action, order parameter, and correlation length

O(N) quantum rotor model ($N \ge 2$)

$$\mathcal{A} = \int d\tau \sum_{\langle ij \rangle} J \epsilon_i \epsilon_j \mathbf{S}_i(\tau) \cdot \mathbf{S}_j(\tau) + \frac{T}{g} \sum_i \sum_n \epsilon_i |\omega_n|^{2/z_0} \mathbf{S}_i(\omega_n) \mathbf{S}_i(-\omega_n)$$

 $\mathbf{S}_i(\tau)$: N-component unit vector at site i and imaginary time τ $\epsilon_i = 0, 1$: random variable describing site dilution z_0 : (bare) dynamical exponent of the clean system.

Order parameter (magnetization):

- magnetic long-range order only possible on infinite percolation cluster
- ullet for $g < g^*$, infinite percolation cluster is ordered for all $p < p_c$
- \Rightarrow magnetization $m \sim P_{\infty} \sim |p p_c|^{\beta_c}$

 $\beta = \beta_c$

Spatial correlation length:

• magnetic correlations cannot extend beyond connectedness length of the lattice \Rightarrow correlation length $\xi \sim \xi_c \sim |p - p_c|^{-\nu_c}$ $\nu = \nu_c$

Quantum dynamics of a single percolation cluster

single percolation cluster of s sites

- for $g < g^*$, all rotors on the cluster are correlated but collectively fluctuate in time
- \Rightarrow cluster acts as single (0+1) dimensional NLSM model with moment s

$$\mathcal{A}_s = s \frac{T}{g} \sum_{i} \sum_{n} |\omega_n|^{2/z_0} \mathbf{S}(\omega_n) \mathbf{S}(-\omega_n) + sh \int d\tau S^{(1)}(\tau)$$

Dimensional analysis or renormalization group calculation:

$$F_s(g, h, T) = g^{\varphi} s^{-\varphi} \Phi\left(h s^{1+\varphi} g^{-\varphi}, T s^{\varphi} g^{-\varphi}\right) \qquad \varphi = z_0/(2 - z_0)$$

- free energy of quantum spin cluster more singular than that of classical spin cluster
- susceptibility: classically $\chi_s^c \sim s^2$, quantum (at T=0): $\chi_s \sim s^{2+\varphi}$ susceptibility of quantum cluster diverges faster with cluster size s

Scaling theory of the percolation quantum phase transition

- total free energy is sum over contributions of all percolation clusters
- combining percolation cluster size distribution + free energy of single cluster

$$F(p-p_c,h,T) = \sum_s n_s(p-p_c) F_s(g,h,T)$$

Scaling form of free energy:

ullet rescaling $s o s/b^{D_f}$ yields

$$F(p - p_c, h, T) = b^{-(d+z)} F((p - p_c)b^{1/\nu}, hb^{(D_f + z)}, Tb^z)$$

- ullet correlation length exponent identical to the classical value, $u=
 u_c$
- \bullet $z = \varphi D_f$ plays the role of the dynamic critical exponent.

Critical behavior

• exponents determined by two lattice percolation exponents (e.g., $\nu = \nu_c$, D_f) and the **dynamical exponent** z

$$2 - \alpha = (d + z) \nu$$

$$\beta = (d - D_f) \nu$$

$$\gamma = (2D_f - d + z) \nu$$

$$\delta = (D_f + z)/(d - D_f)$$

$$2 - \eta = 2D_f - d + z.$$

- classical exponents recovered for z=0:
- α , γ , δ , and η are nonclassical while β is unchanged

Exponents in 2D as function of z_0 .

	2d		3d	
	classical	quantum	classical	quantum
α	-2/3	-115/36	-0.62	-2.83
eta	5/36	5/36	0.417	0.417
γ	43/18	59/12	1.79	4.02
δ	91/5	182/5	5.38	10.76
ν	4/3	4/3	0.875	0.875
η	5/24	-27/16	-0.06	-2.59
z	-	91/48	-	2.53

Exponents in 2d and 3d for $z_0 = 1$.

T.V. + J. Schmalian, PRL **95**, 237206 (2005)

Simulation and experiment

Diluted Heisenberg antiferromagnet $La_2Cu_{1-x}(Zn,Mg)_xO_4$

- neutron scattering experiments Vajk et al., Science 295, 1691, (2002)
- correlation length at $p=p_c$ prediction $\xi \sim T^{-1/z}$

Monte-Carlo simulations

• FSS of Binder cumulant at $p=p_c$ $\Rightarrow z \approx 1.83$

R. Sknepnek, M.V., T.V., PRL **93**, 097201 (2004), T.V., R. Sknepnek PRB **74**, 094415 (2006)

- Geometric percolation
- Classical magnet on a percolating lattice
 - Percolation quantum phase transitions
- Quantum Ising magnet and activated scaling
 - Percolation and dissipation

Diluted transverse-field Ising model

$$H_I = -J \sum_{\langle i,j \rangle} \epsilon_i \epsilon_j \hat{S}_i^z \hat{S}_j^z - h_x \sum_i \epsilon_i \hat{S}_i^x - h_z \sum_i \epsilon_i \hat{S}_i^z ,$$

- ullet $\hat{S}^{x,z}_j$: x and z components of quantum spin operator (S=1/2) at site j
- h_x : transverse magnetic field, controls strength of quantum fluctuations
- h_z : ordering (longitudinal) magnetic field, conjugate to order parameter
- dilution: random variable $\epsilon_i = 0,1$ with probabilities p, 1-p.

single percolation cluster of s sites

- ullet for small h_x , all spins on the cluster are correlated but collectively fluctuate in time
- ullet cluster of size s acts as (0+1) dimensional **Ising model** with moment s
- \bullet energy gap (inverse susceptibility) of cluster depends **exponentially** on size s

$$\Delta \sim \chi_s^{-1} \sim h_x e^{-Bs}$$
 $[B \sim \ln(J/h_x)]$

Activated scaling

ullet exponential relation between length and time scales: $\ln \xi_{ au} \sim \ln(1/\Delta) \sim s \sim \xi^{D_f}$

Activated scaling: $\ln \xi_{\tau} \sim \xi^{D_f}$

Scaling form of the magnetization at the percolation transition (Senthil/Sachdev 96)

ullet sum over all percolation clusters using size distribution n_s

$$m(p - p_c, h_z) = b^{-\beta_c/\nu_c} m\left((p - p_c)b^{1/\nu_c}, \ln(h_z)b^{-D_f}\right)$$

- ullet at the percolation threshold $p=p_c$: $m\sim [\ln(h_z)]^{2-\tau_c}$
- ullet for $p
 eq p_c$: power-law quantum Griffiths effects $m \sim h_z^\zeta$ with nonuniversal ζ

- Geometric percolation
- Classical magnet on a percolating lattice
 - Percolation quantum phase transitions
- Quantum Ising magnet and activated scaling
 - Percolation and dissipation

Dissipative transverse-field Ising model

couple each spin to local bath of harmonic oscillators

$$H = H_I + \sum_{i,n} \epsilon_i \left[\nu_{i,n} a_{i,n}^{\dagger} a_{i,n} + \frac{1}{2} \lambda_{i,n} \hat{S}_i^z (a_{i,n}^{\dagger} + a_{i,n}) \right]$$

- $a_{i,n}^{\dagger}, a_{i,n}$: creation and destruction operator of the n-th oscillator coupled to spin i
- $\nu_{i,n}$ frequency of of the n-th oscillator coupled to spin i
- $\lambda_{i,n}$: coupling constant

Ohmic dissipation: spectral function of the baths is linear in frequency

$$\mathcal{E}(\omega) = \pi \sum_{n} \lambda_{i,n}^2 \delta(\omega - \nu_{i,n}) / \nu_{i,n} = 2\pi \alpha \omega e^{-\omega/\omega_c}$$

lpha dimensionless dissipation strength ω_c cutoff energy

Phase diagram

- ullet percolation cluster of size s equivalent to **dissipative** two-level system with effective dissipation strength slpha
- \Rightarrow large clusters with $s\alpha>1$ freeze small clusters with $s\alpha<1$ fluctuate
- frozen clusters act as classical superspins, dominate low-temperature susceptibility

$$\chi \sim |p - p_c|^{-\gamma_c}/T$$

• magnetization of infinite cluster

$$m_{\infty} \sim P_{\infty}(p) \sim |p - p_c|^{\beta}$$

 magnetization of finite-size frozen and fluctuating clusters leads to unusual hysteresis effects

J. Hoyos and T.V., PRB 74, 140401(R) (2006)

Conclusions

- long-range order on critical percolation cluster is destroyed by thermal fluctuations
 long-range order survives a nonzero amount of quantum fluctuations
 ⇒ permits percolation quantum phase transition
- critical behavior is controlled by lattice percolation exponents but it is different from classical percolation
- in diluted quantum Ising magnets ⇒ exotic transition, activated scaling
- Ohmic dissipation: large percolation clusters freeze, act as superspins
 ⇒ classical superparamagnetic cluster phase

Interplay between geometric criticality and quantum fluctuations leads to novel quantum phase transition universality classes