Infinite-randomness quantum critical points induced by dissipation

Thomas Vojta

Department of Physics, Missouri University of Science and Technology

- Motivation: superconducting nanowires and itinerant quantum magnets
 - Strong-disorder renormalization group
 - Infinite-randomness quantum critical point

Acknowledgements

at Missouri S&T

Chetan Kotabage Man Young Lee

Adam Farquhar Jason Mast

former group members

Mark Dickison (Boston U.)
Bernard Fendler (Florida State U.)
Jose Hoyos (Duke U.)
Shellie Huether (Missouri S&T)
Ryan Kinney (US Navy)
Rastko Sknepnek (Iowa State U.)

external collaboration

Dietrich Belitz (U. of Oregon)
Ribhu Kaul (Harvard U.)
Ted Kirkpatrick (U. of Maryland)
Wouter Montfrooij (U of Missouri)
Jörg Schmalian (Iowa State U.)
Matthias Vojta (U. Karlsruhe)

Funding:

National Science Foundation
Research Corporation
University of Missouri Research Board

Experiment I: Superconductivity in ultrathin nanowires

- ullet ultrathin MoGe wires (width ~ 10 nm)
- produced by molecular templating using a single carbon nanotube
 [A. Bezryadin et al., Nature 404, 971 (2000)]

superconductor-metal QPT as function of wire thickness

Pair breaking mechanism:

- magnetic impurities at the surface
 ⇒ quenched disorder
- gapless excitations in metal phase
 ⇒ Ohmic dissipation

Experiment II: Itinerant quantum magnets

- quantum phase transitions between paramagnetic metal and ferromagnetic or antiferromagnetic metal
- transition often controlled by chemical composition \Rightarrow disorder appears naturally
- magnetic modes damped due to coupling to fermions \Rightarrow Ohmic dissipation
- typical example: ferromagnetic transition in $CePd_{1-x}Rh_x$

(Sereni et al., PRB 75 (2007) 024432 + Westerkamp et al., PRL 102 (2009) 206404)

• Motivation: superconducting nanowires and itinerant quantum magnets
 Strong-disorder renormalization group
 Infinite-randomness quantum critical point

Dissipative O(N) order parameter field theory

N-component (N > 1) order parameter field $\varphi(\mathbf{x}, \tau)$ in d dimensions derived by standard methods (Hubbard-Stratonovich transformation etc.)

$$S = T \sum_{\mathbf{q}, \omega_n} \left(\mathbf{r} + \boldsymbol{\xi}_0^2 \mathbf{q}^2 + \gamma |\omega_n| \right) |\varphi(\mathbf{q}, \omega_n)|^2 + \frac{u}{2N} \int d^d x d\tau \ \varphi^4(\mathbf{x}, \tau)$$

- Superconductor-metal quantum phase transition in nanowires (d=1, N=2) $\varphi(\mathbf{x}, \tau)$ represents local Cooper pair operator (Sachdev, Werner, Troyer 2004)
- Hertz' theory of itinerant quantum Heisenberg antiferromagnets (d=3, N=3) $\varphi(\mathbf{x}, \tau)$ represents staggered magnetization (Hertz 1976)

Strong-disorder renormalization group

- introduced by Ma, Dasgupta, Hu (1979), further developed by Fisher (1992, 1995)
- asymptotically exact if disorder distribution becomes broad under RG

Basic idea: Successively integrate out the local high-energy modes and renormalize the remaining degrees of freedom.

discretized order-parameter field theory for "rotor" variables $\phi_i(\tau)$

$$S = T \sum_{i,\omega_n} (\epsilon_i + \gamma_i |\omega_n|) |\phi_i(\omega_n)|^2 - T \sum_{i,\omega_n} J_i \phi_i(-\omega_n) \phi_{i+1}(\omega_n)$$

the competing local energies are:

- ullet interactions (bonds) J_i favoring the ordered phase
- local "gaps" ϵ_i favoring the disordered phase
- \Rightarrow in each RG step, integrate out largest among all J_i and ϵ_i

Recursion relations in one dimension

if largest energy is a gap, e.g., $\epsilon_3 \gg J_2, J_3$:

- site 3 is removed from the system
- coupling to neighbors is treated in 2nd order perturbation theory

new renormalized bond $\widetilde{J}=J_2J_3/\epsilon_3$

if largest energy is a bond, e.g., $J_2 \gg \epsilon_2, \epsilon_3$:

- rotors of sites 2 and 3 are parallel
- can be replaced by single rotor with moment $\tilde{\mu} = \mu_2 + \mu_3$

renormalized gap $\tilde{\epsilon}=\epsilon_2\epsilon_3/J_2$

Renormalization-group flow equations

- ullet strong disorder RG step is iterated, gradually reducing maximum energy Ω
- competition between cluster aggregation and decimation
- leads to larger and larger clusters connected by weaker and weaker bonds
- \Rightarrow flow equations for the full probability distributions P(J) and $R(\epsilon)$

$$-\frac{\partial P}{\partial \Omega} = [P(\Omega) - R(\Omega)]P + R(\Omega) \int dJ_1 dJ_2 P(J_1)P(J_2) \delta\left(J - \frac{J_1 J_2}{\Omega}\right)$$
$$-\frac{\partial R}{\partial \Omega} = [R(\Omega) - P(\Omega)]R + P(\Omega) \int d\epsilon_1 d\epsilon_2 R(\epsilon_1)R(\epsilon_2) \delta\left(\epsilon - \frac{\epsilon_1 \epsilon_2}{\Omega}\right)$$

Flow equations are identical to those of the random transverse-field Ising chain Note symmetry between J and $\epsilon!$

Fixed points

If bare distributions do not overlap:

 $\langle \ln \epsilon \rangle > \langle \ln J \rangle$: no clusters formed – disordered phase

 $\langle \ln \epsilon \rangle < \langle \ln J \rangle$: all sites connected – ordered phase

If bare distributions do overlap:

 $\langle \ln \epsilon \rangle > \langle \ln J \rangle$: rare clusters – disordered Griffiths phase

 $\langle \ln \epsilon \rangle < \langle \ln J \rangle$: rare "holes" – ordered Griffiths phase

 $\langle \ln \epsilon \rangle = \langle \ln J \rangle$: cluster aggregation and decimation balance at all energies — critical point

$$\mathcal{P}(\zeta) = \frac{1}{\Gamma} e^{-\zeta/\Gamma}, \quad \mathcal{R}(\beta) = \frac{1}{\Gamma} e^{-\beta/\Gamma}$$

log. variables $\zeta = \ln(\Omega/J)$, $\beta = \ln(\Omega/\epsilon)$, $\Gamma = \ln(\Omega_0/\Omega)$

Distributions become infinitely broad at critical point

initial (bare) distributions

 Motivation: superconducting nanowires and itinerant quantum magnets
• Strong-disorder renormalization group
• Infinite-randomness quantum critical point

Critical behavior

- at critical FP, disorder scales to ∞
 ⇒ infinite-randomness critical point
- activated dynamical scaling $\ln(1/\Omega) \sim L^{\psi}$ with tunneling exponent $\psi = 1/2$
- moments of surviving clusters grow like $\mu \sim \ln^{\phi}(1/\Omega)$ with $\phi = (1+\sqrt{5})/2$
- average correlation length diverges as $\xi \sim |r|^{-\nu}$ with $\nu=2$

dissipative O(N) order parameter is in universality class of dissipationless random transverse-field Ising model.

Quantum Griffiths regions:

 power-law dynamical scaling with nonuniversal exponent

finite-temperature phase boundary and crossover line take unusual form

$$T_c \sim \exp(-\text{const} |r|^{-\nu\psi})$$

Critical thermodynamics

Order parameter susceptibility and specific heat:

run RG down to energy scale $\Omega=T$ and consider remaining clusters as free

$$\chi(r,T) = \frac{1}{T} \left[\ln(1/T) \right]^{2\phi - d/\psi} \Theta_{\chi} \left(r^{\nu\psi} \ln(1/T) \right)$$

$$C(r,T) = \left[\ln(1/T) \right]^{-d/\psi} \Theta_{C} \left(r^{\nu\psi} \ln(1/T) \right)$$

at criticality: $\chi \sim \frac{1}{T} \left[\ln(1/T) \right]^{2\phi - d/\psi}$, in Griffiths phase: $\chi \sim T^{d/z'-1}$

Dynamic susceptibilities at T=0:

found by running RG to energy scale $\Omega \approx \omega$

$$\operatorname{Im}\chi(r,\omega) \sim \frac{1}{\omega} \left[\ln(1/\omega)\right]^{\phi-d/\psi} X \left(r^{\nu\psi} \ln(1/\omega)\right)$$
$$\operatorname{Im}\chi^{\operatorname{loc}}(r,\omega) \sim \frac{1}{\omega} \left[\ln(1/\omega)\right]^{-d/\psi} X^{\operatorname{loc}} \left(r^{\nu\psi} \ln(1/\omega)\right)$$

Grüneisen parameter

Grüneisen parameter: ratio between thermal expansion coefficient and specific heat

$$\Gamma = \frac{\beta}{c_p} = -\frac{(\partial S/\partial p)_T}{V_m T (\partial S/\partial T)_p}$$

• at criticality:

$$\Gamma = -\frac{\psi}{V_m p_c d} \frac{\Phi'(0)}{\Phi(0)} \left[\ln(T_0/T) \right]^{1+1/(\nu\psi)}$$

• in the Griffiths phase:

$$\Gamma = \frac{1}{V_m} \frac{\nu \psi}{p - p_c} \ln(T_0/T)$$

Numerical confirmation

- A. Del Maestro et al. (2008) solved disordered large-N problem numerically exactly
- calculated equal time correlation function C, energy gap Ω , and ratio R of local and order parameter dynamic susceptibilities

Infinite-randomness physics in $CePd_{1-x}Rh_x$??

- ferromagnetic phase shows pronounced tail, evidence for glassy behavior in tail, possibly due to RKKY interactions
- above tail: nonuniversal power-laws characteristic of quantum Griffiths effects

(Sereni et al., Phys. Rev. B 75 (2007) 024432 + Westerkamp, private communication)

Classification of weakly disordered phase transitions according to importance of rare regions

T. Vojta, J. Phys. A **39**, R143–R205 (2006)

Dimensionality of rare regions	Griffiths effects	Dirty critical point	Examples (classical PT, QPT, non-eq. PT)
$d_{RR} < d_c^-$	weak exponential	conv. finite disorder	class. magnet with point defects dilute bilayer Heisenberg model
$d_{RR} = d_c^-$	strong power-law	infinite randomness	Ising model with linear defects random quantum Ising model disordered directed percolation (DP)
$d_{RR} > d_c^-$	RR become static	smeared transition	Ising model with planar defects itinerant quantum Ising magnet DP with extended defects

Conclusions

- We have performed a strong-disorder renormalization group study of the QPT in disordered dissipative systems with continuous symmetry* order parameters
- 1D: analytical solution gives **infinite-randomness** critical point in the universality class of the random transverse-field Ising model
- 2D: numerical solution displays analogous scenario, exponent values different 3D: preliminary numerical results point in same direction
- unconventional transport properties, work in progress

```
For details see: Phys. Rev. Lett. 99, 230601 (2007), Phys. Rev. B 79, 024401 (2009), Phys. Rev. B 80, 041101(R) (2009)
```

Interplay between disorder and dissipation leads to exotic quantum critical behavior.

^{*} There are even stronger effects for discrete symmetry that lead to a destruction of the sharp quantum phase transition by smearing, see J. A. Hoyos and T.V., Phys. Rev. Lett. **100**, 240601 (2008)