# Quantum phase transitions and novel phases in condensed matter

## **Thomas Vojta**

Department of Physics, Missouri University of Science and Technology



- Condensed matter physics: complexity and emerging phenomena
  - Phase transitions and quantum phase transitions
    - Novel phases close to quantum critical points

## Acknowledgements

#### At Missouri S&T:



Rastko Sknepnek PhD '04



José Hoyos Postdoc '07



Chetan Kotabage PhD '11



David Nozadze PhD '13



Fawaz Hrahsheh PhD '13



Manal Al Ali PhD '13



Hatem Barghathi

#### **Experimental Collaborators:**



Almut Schroeder (Kent State)



Istvan Kezsmarki (TU Budapest)



## What is condensed matter physics?

#### **Condensed Matter Physics** (Wikipedia):

deals with the macroscopic properties of matter; in particular ... the "condensed" phases that appear whenever the number of constituents in a system is large and their interactions ... are strong

#### **Traditionally: Physics of solids and liquids**

- What is the structure of crystals?
- How do solids melt or liquids evaporate?
- Why do some materials conduct an electric current and others do not?

#### Today: all systems consisting of a large number of interacting constituents

- biological systems: biomolecules, DNA, membranes, cells
- geological systems: earthquakes
- economical systems: fluctuations of stock markets, currencies

## Why condensed matter physics?

#### **Applications:** "Helps you to make stuff."

- semiconductors, transistors, microchips
- magnetic recording devices
- liquid crystal displays
- plastic and composite materials



Read head, based on Giant Magnetoresistance effect (A. Fert + P. Grünberg, Physics Nobel Prize 2007)



Maglev train using levitation by superconducting magnets, can go faster than 350 mph





## Why condensed matter physics II

#### **Directions of fundamental physics research:**

Astrophysics and cosmology: increasing length and time scales "physics of the very large"





Atomic, nuclear and elementary particle physics:

decreasing length and time scales "physics of the very small"



Particle accelerator at Fermilab

What fundamental direction does condensed matter research explore? "physics of the very complex"

## **Emerging phenomena and the axis of complexity**

"More is different!"

#### number of particles



## **Emerging phenomena:**

When large numbers of particles strongly interact, qualitatively new properties of matter emerge at every level of complexity

## Where to look for new phenomena and novel phases?



#### at low temperatures

$$F = E - TS$$

- thermal motion is suppressed
- new types of order can form

#### at boundaries of existing phases

- two types of order compete, suppress each other
- novel type of order may appear



## Wonderland of low temperatures\*

273K (0C) water freezes

195K (-78C) carbon dioxide sublimates (dry ice)

133K (-140C) superconductivity in cuprate perovskites

77K (-196C) nitrogen (air) liquefies

66K (-207C) nitrogen (air) freezes

4.2K (-268.9C) helium liquefies

2.2K (-270.9C) helium becomes superfluid

170 nK Bose-Einstein condensation of rubidium

OK (-273.1C) absolute zero of temperature

<sup>\*</sup> Nandini Trivedi

- Condensed matter physics: complexity and emerging phenomena
- Phase transitions and quantum phase transitions
  - Novel phases close to quantum critical points

## Phase diagram of water



#### **Phase transition:**

singularity in thermodynamic quantities as functions of external parameters

#### Phase transitions: 1st order vs. continuous

#### 1st order phase transition:

phase coexistence, latent heat, short range spatial and time correlations

## **Continuous transition (critical point):**

no phase coexistence, no latent heat, infinite range correlations of fluctuations



#### **Critical behavior at continuous transitions:**

diverging correlation length  $|\xi| \sim |T-T_c|^{-\nu}$  and time  $|\xi|_{\tau} \sim \xi^z \sim |T-T_c|^{-\nu z}$ 

Manifestation: critical opalescence (Andrews 1869)

Universality: critical exponents are independent of microscopic details

## **Critical opalescence**

## **Binary liquid system:**

e.g. hexane and methanol

 $T > T_c \approx 36^{\circ} \text{C}$ : fluids are miscible

 $T < T_c$ : fluids separate into two phases

 $T \rightarrow T_c$ : length scale  $\xi$  of fluctuations grows

When  $\xi$  reaches the scale of a fraction of a micron (wavelength of light):

strong light scattering fluid appears milky



46°C



39°C



Pictures taken from http://www.physicsofmatter.com

## How important is quantum mechanics close to a critical point?

#### Two types of fluctuations:

thermal fluctuations (thermal motion), energy scale  $k_BT$  quantum fluctuations (quantum zero-point motion), energy scale  $\hbar\omega_c$ 

Quantum effects unimportant if  $\hbar\omega_c\ll k_BT$ .

#### **Critical slowing down:**

 $\omega_c \sim 1/\xi_\tau \sim |T-T_c|^{\nu z} \to 0$  at the critical point

- ⇒ For any nonzero temperature, quantum fluctuations do not play a role close to the critical point
- ⇒ Quantum fluctuations do play a role a zero temperature

Thermal continuous phase transitions can be explained entirely in terms of classical physics, zero-temperature transitions require quantum mechanics

## **Quantum phase transitions**

occur at zero temperature as function of pressure, magnetic field, chemical composition, ...

driven by quantum zero-point motion rather than thermal fluctuations



Phase diagrams of LiHoF $_4$  and a typical high- $T_c$  superconductor such as YBa $_2$ Cu $_3$ O $_{6+x}$ 

## Toy model: transverse field Ising model

Quantum spins  $S_i$  on a lattice: (c.f. LiHoF<sub>4</sub>)

$$H = -J \sum_{i} \mathbf{S}_{i}^{z} \mathbf{S}_{i+1}^{z} - h \sum_{i} \mathbf{S}_{i}^{x}$$
$$= -J \sum_{i} \mathbf{S}_{i}^{z} \mathbf{S}_{i+1}^{z} - \frac{h}{2} \sum_{i} (\mathbf{S}_{i}^{+} + \mathbf{S}_{i}^{-})$$



J: exchange energy, favors parallel spins, i.e., ferromagnetic state

h: transverse magnetic field, induces quantum fluctuations between up and down states, favors paramagnetic state

#### **Limiting cases:**

 $|J|\gg |h|$  ferromagnetic ground state as in classical Ising magnet

 $|J|\ll |h|$  paramagnetic ground state as for independent spins in a field

 $\Rightarrow$  Quantum phase transition at  $|J| \sim |h|$  (in 1D, transition is at |J| = |h|)

## Magnetic quantum critical points of TlCuCl<sub>3</sub>

- TICuCl<sub>3</sub> is magnetic insulator
- planar Cu<sub>2</sub>Cl<sub>6</sub> dimers form infinite double chains
- Cu<sup>2+</sup> ions carry spin-1/2 moment



## antiferromagnetic order

can be induced by

- applying pressure
- applying a magnetic field



## Pressure-driven quantum phase transition in TICuCl<sub>3</sub>

#### quantum Heisenberg model

$$H = \sum_{\langle ij \rangle} J_{ij} \, \vec{S}_i \cdot \vec{S}_j - \vec{h} \cdot \sum_i \vec{S}_i \ .$$

$$J_{ij} = \begin{cases} J & \text{intra-dimer} \\ J' & \text{between dimers} \end{cases}$$



 $\longrightarrow$  intra-dimer interaction J

— inter-dimer interaction J'



pressure changes ratio J/J'

#### **Limiting cases:**

 $|J|\gg |J'|$  spins on each dimer form singlet  $\Rightarrow$  no magnetic order low-energy excitations are "triplons" (single dimers in the triplet state)

|J| pprox |J'| long-range antiferromagnetic order (Néel order) low-energy excitations are long-wavelength spin waves

 $\Rightarrow$  quantum phase transition at some critical value of the ratio  $J/J^\prime$ 

## Field-driven quantum phase transition in TICuCl<sub>3</sub>

## Single dimer in field:

- field does not affect singlet ground state but splits the triplet states
- ground state: singlet for  $B < B_c$  and (fully polarized) triplet for  $B > B_c$



#### **Full Hamiltonian:**

- singlet-triplet transition of isolated dimer splits into two transitions
- at  $B_{c1}$ , triplon gap closes, system is driven into ordered state (uniform magnetization || to field and antiferromagnetic order  $\bot$  to field)
- "canted" antiferromagnet is Bose-Einstein condensate of triplons
- at  $B_{c2}$  system enters fully polarized state

## Superconductor-metal QPT in ultrathin nanowires

- ullet ultrathin MoGe wires (width  $\sim 10$  nm)
- produced by molecular templating using a single carbon nanotube
   [A. Bezryadin et al., Nature 404, 971 (2000)]





- thicker wires are superconducting at low temperatures
- thinner wires remain metallic

superconductor-metal QPT as function of wire thickness

## Pairbreaking mechanism

- pair breaking by surface magnetic impurities
- random impurity positions
  - ⇒ quenched disorder
- gapless excitations in metal phase
  - ⇒ Ohmic dissipation



weak field enhances superconductivity



magnetic field aligns the impurities and reduces magnetic scattering

## Mott transition in a Bose-Einstein condensate



| • | Condensed matter physics: complexity and emerging phenomena         |
|---|---------------------------------------------------------------------|
|   | <ul> <li>Phase transitions and quantum phase transitions</li> </ul> |

• Novel phases close to quantum critical points

## Magnetic phases in MnSi

#### Phase diagram: (Pfleiderer et al, 2004)

- magnetic transition at 30 K at ambient pressure
- transition tunable by hydrostatic pressure
- ullet quantum phase transition at  $p_c=14$  kbar

#### Magnetic state:

- ordered state is helimagnet with  $q = 180 \text{\AA}$ , pinned in (111) direction
- short-range order persists in paramagnetic phase, helical axis depinned



## **Skyrmions and skyrmion lattices**

- $\bullet$  even more exotic magnetic states occur in  $_{\mathbf{A}}$  magnetic field B
- in "A" phase, magnetization vector forms knots, called skyrmions, by twisting in two end of two directions
- these skyrmions arrange themselves into regular skyrmion lattice





## **Exotic superconductivity in UGe**<sub>2</sub>

#### Phase diagram:

- phase diagram of UGe $_2$  has pocket of **superconductivity** close to ferromagnetic quantum phase transition (electrical resistivity **vanishes** below about 1K)
- in this pocket, UGe<sub>2</sub> is **ferromagnetic and superconducting** at the same time
- superconductivity appears only in superclean samples



Phase diagram and resistivity of UGe<sub>2</sub> (Saxena et al, Nature, 2000)

## Character of superconductivity in UGe<sub>2</sub>

## not compatible with conventional (BCS) superconductivity:

- in superconductor, electrons form (Cooper) pairs of spin-up and spin-down electrons
- ferromagnetism requires majority of spins to be in one direction

#### theoretical ideas:

- phase separation (layering or disorder): NO!
- partially paired FFLO state: NO!
- spin triplet pairs with odd spatial symmetry, magnetic fluctuations promote this type of pairing

Magnetic quantum phase transition induces spin-triplet superconductivity





## Is high-temperature superconductivity caused by QPT?



phase diagram high- $T_c$  superconductor such as  ${\sf YBa_2Cu_3O_{6+x}}$ 

#### **Conclusions**

- emerging phenomena: "more is different"
- new states of matter often can be found at low temperatures and at boundaries between existing phases
- quantum phase transitions occur at zero temperature as a function of a parameter like pressure, chemical composition, disorder, magnetic field
- quantum phase transitions are caused by quantum fluctuations (i.e, Heisenberg's uncertainty principle) rather than thermal fluctuations
- quantum phase transitions can have fascinating consequences including the genesis of new phases

Quantum phase transitions provide a novel ordering principle in condensed matter physics

| If the critical behavior is classical at any nonzero temperature, why are |
|---------------------------------------------------------------------------|
| quantum phase transitions more than an academic problem?                  |
|                                                                           |
|                                                                           |

## Phase diagrams close to quantum phase transition

Quantum critical point controls **nonzero-temperature** behavior in its vicinity:

Path (a): crossover between classical and quantum critical behavior

Path (b): temperature scaling of quantum critical point

