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Phase transitions: the basics

Phase transition:

• singularity in free energy

• occurs in macroscopic systems

1st order transition:

• phase coexistence, latent heat

• finite correlation length and time

Continuous transition:

• no phase coexistence, latent heat

• diverging correlations
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Critical behavior:

• diverging correlation length ξ ∼ |T −Tc|−ν and time ξτ ∼ ξz ∼ |T −Tc|−νz

• power-laws in thermodynamic observables: ∆ρ ∼ |T − Tc|β, κ ∼ |T − Tc|−γ

• critical exponents are universal = independent of microscopic details



Quantum phase transitions

• occur at zero temperature as function of pressure, magnetic field, ...

• driven by quantum rather than thermal fluctuations
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Transverse-field Ising model

H = −J
∑
⟨i,j⟩

σzi σ
z
j − h

∑
i

σxi

transverse magnetic field induces spin
flips via σx = σ+ + σ−

transverse field suppresses magnetic
order

Quantum to classical mapping:
• maps QPT in d dimensions to classical PT in d+ 1 dimensions
• imaginary time plays role of additional dimension
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Phase transitions and disorder

• system undergoing classical, quantum, or
nonequilibrium phase transition

• real systems always contain impurities,
defects and other types of disorder

Weak (random-Tc, random-mass) disorder:

• spatial variation of coupling strength

• locally favors one phase over the other

• does not break order-parameter symmetries

• no change in character of the bulk phases

Will the phase transition remain sharp or become smeared?

Will the order of the transition change

Will the critical behavior change?



Harris criterion

Harris: stability of clean critical point
variation of average local Tc(i) between correlation volumes must be smaller than
distance from global Tc

variation of average Tc(i) in volume ξd

∆Tc(i) ∼ ξ−d/2

global distance from critical point
T − Tc ∼ ξ−1/ν

∆Tc(i)/(T − Tc) → 0 at criticality

dν > 2

ξ

+TC(1),

+TC(4),

+TC(2),

+TC(3),

• if clean critical point fulfills Harris criterion ⇒ stable against disorder
• system is asymptotically clean as inhomogeneities vanish at large length scales
• macroscopic observables are self-averaging
• example: 3D classical Heisenberg magnet: ν = 0.711

extension to general spatio-temporal disorder: T.V and R. Dickman, PRE 93, 032143 (2016)



Finite-disorder critical points

if critical point violates Harris criterion ⇒ unstable against disorder

Common lore:

• new, different critical point which fulfills dν > 2
• inhomogeneities finite at all length scales (”finite disorder”)
• macroscopic observables not self-averaging
• example: 3D classical Ising magnet: clean ν = 0.627 ⇒ dirty ν = 0.684

Distribution of critical
susceptibilities of 3D dilute
Ising model
(Wiseman + Domany 98)
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Disorder and quantum phase transitions

Disorder is quenched:

• impurities are time-independent

• disorder is perfectly correlated in
imaginary time direction

⇒ correlations increase the effects of disorder
(”it is harder to average out fluctuations”)

x

τ

Disorder generically has stronger effects on quantum phase transitions
than on classical transitions



Random transverse-field Ising model

H = −
∑
⟨i,j⟩

Jijσ
z
i σ

z
j−

∑
i

hiσ
x
i

nearest neighbor interactions Jij and transverse fields hi both random

Strong-disorder renormalization group:

• Ma, Dasgupta, Hu (1979), Fisher (1992, 1995)
• in each step, integrate out largest of all Jij, hi
• cluster aggregation/annihilation process
• exact in the limit of large disorder
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Analytical solution in 1+1 dimensions:

• flow equations for entire probability distributions P (J), R(h)
• under renormalization, relative width of the distributions diverges
⇒ disorder increases without limit



Infinite-disorder critical point

• distributions of macroscopic observables become infinitely broad

• average and typical values drastically different
correlations: Gav ∼ r−η , − logGtyp ∼ rψ

• averages dominated by rare events

• extremely slow dynamics log ξτ ∼ ξµ (activated dynamical scaling)

Probability distribution of

end-to-end correlations in

a random quantum Ising

chain

(Fisher + Young 98)
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Rare regions in a classical dilute ferromagnet

• critical temperature Tc is reduced
compared to clean value Tc0

• for Tc < T < Tc0:
no global order but local order on rare
regions devoid of impurities

• rare region probability exponentially small

p(L) ∼ e−cL
d

Thermodynamics of rare regions

• rare regions cannot order statically but act as large superspins

• very slow dynamics, enhanced thermodynamic response

Can rare regions dominate thermodynamics of the entire system?



Griffiths region or Griffiths “phase”

Griffiths:

rare regions lead to singular free energy
everywhere in the interval Tc < T < Tc0

Rare region susceptibility:

• susceptibility of single RR: χ . L2d/T
• sum over all RRs:

χRR ∼
∫
dL e−cL

d
L2d

• essential singularity
• large regions make negligible contribution

In generic classical systems:

Thermodynamic Griffiths effects are weak and essentially unobservable

Long-time dynamics can be dominated by rare regions



Quantum Griffiths effects

Quantum phase transitions:

• rare regions are finite in space but
infinite in imaginary time

• fluctuations even slower than in
classical case

Griffiths singularities enhanced

t

rare region at a quantum phase transition

Transverse-field Ising systems:

• susceptibility of rare region: χloc ∼ ∆−1 ∼ eaL
d

χRR ∼
∫
dL e−cL

d
eaL

d
can diverge inside Griffiths region

• power-law quantum Griffiths singularities

susceptibility: χRR ∼ T d/z
′−1, specific heat: CRR ∼ T d/z

′

z′ is continuously varying Griffiths dynamical exponent, diverges at criticality

Connection between Harris criterion and Griffiths sing., T.V. + J.A. Hoyos, PRL 112, 075702 (2014)



Smeared phase transitions

Randomly layered classical magnet:

• random layers of two different ferromagnets

• rare regions are thick 2d slabs of the
material with higher Tc

• 2d (Ising) magnets have true phase
transition

⇒ global magnetization develops gradually as
rare regions order independently

global phase transition is smeared by disorder

Smeared quantum phase transitions:

• if isolated rare region develops static order parameter ⇒ transition smeared

• example: itinerant Ising magnet (order parameter damped by coupling to
electrons, this prevents rare regions from tunneling)

T.V., PRL 90, 107202 (2003), J.A. Hoyos and T.V., PRL 100, 240601 (2008)



Magnetization tail of smeared transition

• tail produced by largest rare regions
(thickest slabs)

• slab transition temperature Tc(L) < T 0
c

(T 0
c = higher of the two bulk Tc)

• finite size scaling: |Tc(L)−T 0
c | ∼ L−ϕ

(ϕ = clean shift exponent)

• probability for slab devoid of weak
planes: w ∼ e−cL

Magnetization tail for T → T 0
c−

m(T ) ∼ exp(−B |T − T 0
c |−1/ϕ)

R. Sknepnek and T.V., PRB 69, 174410 (2004)

m

exponential tail
replaces Griffiths
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Superconductor-metal quantum phase transition in nanowires

• ultrathin MoGe wires (width ∼ 10 nm)

• molecular templating using a single
carbon nanotube [Bezryadin group, UIUC]

• pair breaking by surface magnetic
impurities

• creates disorder and dissipation

superconductor-metal QPT as
function of wire thickness



Quantum Landau-Ginzburg-Wilson theory

• number of transport channels (states transverse to wire) is large, N⊥ ≫ 1
⇒ motion of (unpaired) electrons is three-dimensional

• wire width ≈ 10nm ∼ coherence length, wire length ≈ 500nm
⇒ superconducting critical fluctuations are one-dimensional

Free energy functional:

S = T
∑
q,ωn

(
r + ξ20q

2 + γ |ωn|
)
|φ(q, ωn)|2 +

u

2N

∫
ddxdτ φ4(x, τ)

To apply strong-disorder RG, discretize space:

S = T
∑
i,ωn

(ϵi + γi|ωn|) |ϕi(ωn)|2 − T
∑
i,ωn

Ji ϕi(−ωn)ϕi+1(ωn)

⇒ chain of coupled superconducting grains, coupled by Josephson interactions

⇒ disorder: ϵi, γi, Ji random variables



Strong-disorder renormalization group

Competing local energies:

• local “energy gaps”ϵi, favoring normal phase

• bonds Ji (Josephson couplings), favoring
superconducting phase

Infinite-randomness critical point:

• distributions P (J) and R(ϵ) become
infinitely broad

• universality class of random transverse-field
Ising model

• critical exponents known exactly in 1D

• activated dynamical scaling, log ξt ∼ ξψ

(ψ = 1/2 in 1D)

• higher dimensions: same activated scaling
scenario, exponents known numerically

Tc ∼ exp(−const |r|−νψ)

J.A. Hoyos, C. Kotabage and T.V., PRL 99, 230601 (2007), PRB 79, 024401 (2009)



Critical behavior and Griffiths singularities

Specific heat:

C(r, T ) =

(
ln
T0

T

)−d/ψ

ΦC

(
r
νψ

ln
T0

T

)

Griffiths phase:

C(r, T ) ∼ T d/z
′

Griffiths dynamical exponent z′ ∼ r−νψ

diverges at criticality

Ordered Griffiths phase:

long-range order but vanishing stiffness
anomalous elasticity:

f(Θ) − f(0) ∼ Θ2L−(1+z) (z > 1)

P. Mohan, P.M. Goldbart, R. Narayanan, J.

Toner and T.V, PRL 105, 085301 (2010)

Dynamical (optical) conductivity:

• calculated from Kubo formula

• include vector potential in SDRG

σ
′
(r, ω) =

4e2

h

(
ln
ω0

ω

)1/ψ
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Experiment: ultrathin Ga films

Xing et al., Science 350, 542 (2015)

• superconductivity below Tc ≈ 3.62K,
suppressed by magnetic field

• field-driven QPT well described by
2D infinite-randomness critical point

• dynamical exponent diverges as
z ∼ |B −Bc|−νψ with ν ≈ 1.2, ψ ≈ 0.5

Exponent values from MC simulations by T.V.,

A. Farquhar, J. Mast, PRE 79, 011111 (2009)



Ferromagnetic Griffiths singularities in Ni1−xVx
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Smeared quantum phase transition in Sr1−xCaxRuO3

Magnetization and Tc in tail:

M,Tc ∼ exp

[
−C

(x− x0
c)

2−d/ϕ

x(1 − x)

]

L. Demkó et al, PRL 108, 185701 (2012)

F. Hrahsheh et al., PRB 83, 224402 (2011)

C. Svoboda et al., EPL 97, 20007 (2012)
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Disorder at phase transitions: two frameworks

• fate of average disorder strength under coarse graining

• importance of rare regions and strength of Griffiths singularities

Recently:

• general relation between Harris criterion and rare region physics
T.V. + J.A. Hoyos, Phys. Rev. Lett. 112, 075702 (2014), Phys. Rev. E 90, 012139 (2014)

• below d+c , same inequality, dν > 2, governs relevance or irrelevance of disorder
and fate of the Griffiths singularities

• above d+c , behavior is even richer

• relevance of rare regions depends on inequality d+c ν > 2



Conclusions

• even weak disorder can have surprisingly strong effects on a phase transition

• rare regions play a much bigger role at quantum phase transitions than at
classical transitions

• classification of Griffiths phenomena according to effective dimensionality of
rare regions

• experimental evidence for quantum Griffiths singularities and smeared phase
transitions has been found at magnetic and superconducting quantum phase
transitions in disordered metals

Quenched disorder at quantum phase transitions leads to a rich variety of
new effects and exotic phenomena

Reviews: T.V., J. Phys. A 39, R143 (2006); J. Low Temp. Phys. 161, 299 (2010);

AIP Conf. Proc. 1550, 188 (2013); Ann. Rev. Cond. Mat. Phys., to appear 2018



Imaginary time and quantum to classical mapping

Classical partition function: statics and dynamics decouple

Z =
∫
dpdq e−βH(p,q) =

∫
dp e−βT (p)

∫
dq e−βU(q) ∼

∫
dq e−βU(q)

Quantum partition function: statics and dynamics coupled

Z = Tre−βĤ = limN→∞(e−βT̂/Ne−βÛ/N)N =
∫
D[q(τ)] eS[q(τ)]

imaginary time τ acts as additional dimension
at T = 0, the extension in this direction becomes infinite

Caveats:
• mapping holds for thermodynamics only
• resulting classical system can be unusual and anisotropic (z ̸= 1)
• if quantum action is not real, extra complications may arise, e.g., Berry phases



Strong-disorder renormalization group

• introduced by Ma, Dasgupta, Hu (1979), further developed by Fisher (1992, 1995)
• asymptotically exact if disorder distribution becomes broad under RG

Basic idea: Successively integrate out the local high-energy modes and
renormalize the remaining degrees of freedom.

Discretized large-N action: (ϵi, γi, Ji: random variables)

S = T
∑
i,ωn

(ϵi + γi|ωn|) |ϕi(ωn)|2 − T
∑
i,ωn

Ji ϕi(−ωn)ϕi+1(ωn)

the competing local energies are:

• bonds (Josephson couplings) Ji, favoring ordered phase
• local “energy gaps”ϵi, favoring disordered phase

⇒ in each RG step, integrate out largest among all Ji and ϵi

J.A. Hoyos, C. Kotabage and T.V., PRL 99, 230601 (2007), PRB 79, 024401 (2009)



RG recursions and flow equations

J=J
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if largest energy is a gap, e.g., ϵ3 ≫ J2, J3:

• site 3 is removed from the system

• bonds treated in 2nd order perturbation theory

• renormalized bond J̃ = J2J3/ϵ3

if largest energy is a bond, e.g., J2 ≫ ϵ2, ϵ3:

• rotors of sites 2 and 3 are parallel

• replaced by single rotor, moment µ̃ = µ2 + µ3

• renormalized gap ϵ̃ = ϵ2ϵ3/J2

flow equations for probability distributions P (J) and R(ϵ)

−
∂P

∂Ω
= [P (Ω) − R(Ω)]P + R(Ω)

∫
dJ1dJ2 P (J1)P (J2) δ

(
J −

J1J2

Ω

)
−
∂R

∂Ω
= [R(Ω) − P (Ω)]R + P (Ω)

∫
dϵ1dϵ2R(ϵ1)R(ϵ2) δ

(
ϵ−

ϵ1ϵ2

Ω

)



Fixed points

If bare distributions do not overlap:

⟨ln ϵ⟩ > ⟨ln J⟩: no clusters formed – disordered phase

⟨ln ϵ⟩ < ⟨ln J⟩: all sites connected – ordered phase

If bare distributions do overlap:

⟨ln ϵ⟩ > ⟨ln J⟩: rare clusters – disordered Griffiths phase

⟨ln ϵ⟩ < ⟨ln J⟩: rare “holes” – ordered Griffiths phase

⟨ln ϵ⟩ = ⟨ln J⟩: cluster aggregation and decimation
balance at all energies – critical point

P(ζ) =
1

Γ
e−ζ/Γ, R(β) =

1

Γ
e−β/Γ

log. variables ζ = ln(Ω/J), β = ln(Ω/ϵ), Γ = ln(Ω0/Ω)

Distributions become infinitely broad
⇒ infinite-randomness critical point
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