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ABSTRACT

We explore the phase transition in the diluted quasi-one-dimensional quantum Ising

model. We begin by giving an introduction to the Ising model followed by derivations of

the properties and observables. A brief overview of Monte-Carlo simulations, is also given

focusing on two algorithms that make simulations for physically realizable systems possible,

the Metropolis and Wolff algorithms. We finally discuss the concept of random-disorder in

the system and the effects this can have on the bulk of the system.

These concepts are then directly applied to a quasi-one-dimensional Ising model.

Motivated by recent experiments on the spin-chain material cobalt niobate, we construct a

quasi-one-dimensional quantum Ising model with anisotropic spatial interactions. We first

consider the classical case. Using Monte Carlo simulations, we study its properties under

site dilution.

We then consider the quantum phase transition which is driven by a transverse

magnetic field. To do so, we map the transverse-field quantum Ising model to a 4D classical

model, which we again study via Monte Carlo simulations.
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1. INTRODUCTION

Physical systems become greatly more complicated once the number of particles

𝑁 exceeds 2. For a realistic description of macroscopic systems, 𝑁 must be increased by

several orders of magnitude. Macroscopic systems feature distinct phases (uniform states

of matter) and have phase transitions that separate them. In this section, I will introduce

the elementary concepts of phase transitions and their applicability in more detail. In

this thesis, we are particularly interested in a lattice-bound ferromagnet. Thus I will also

introduce the Ising model which is a minimal model that describes the magnetic properties

of a lattice-bound uniaxial ferromagnet. I will derive its basic thermodynamic properties

through the canonical ensemble and introduce the Monte Carlo algorithms that permit

efficient computer simulations. I will finally introduce the concept of random dilution, its

representation in an Ising model, and its effects on the phase transitions.

1.1. PHASE TRANSITIONS

A phase transition is constituted by the abrupt change in a macroscopic system’s

properties when probed by a change of external control parameters. Key properties charac-

terizing phases include, for example, the physical structure, magnetism, and conductivity [1].

Control parameters are related to the external conditions or environment for our system. For

example, changes in the temperature, pressure, and magnetic field can cause a system to

undergo a phase transition. This is observed in many physical processes in nature including

the system we will study in this thesis.

Familiar examples of phase transitions are the changes in the physical structure

of water. When the control parameter, temperature 𝑇 , approaches 0◦C from below, the

physical lattice structure of water breaks down into a liquid. At 100◦C, the liquid undergoes

another phase transition to become a gas. These transitions in water are known as 1st-order

transitions, characterized by a discontinuous change of the density and by latent heat. A
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second example of a phase transition occurs in a ferromagnetic material. Here, a change in

the control parameter 𝑇 leads to a change in its magnetic phase. Above a certain critical

temperature𝑇𝑐, this material will exhibit a paramagnetic phase, which physically corresponds

to the magnetic dipoles in the material pointing in random directions. Below 𝑇𝑐 the material

has a ferromagnetic phase that physically has the magnetic dipoles pointing parallel to one

another in the same direction. In contrast to the change in density at the phase transitions

of water, the magnetization changes continuously at the ferromagnetic critical temperature,

which characterizes a continuous, or 2nd-order transition. Continuous transitions will be

discussed in more depth throughout this section and this thesis.

We can better understand the phases of a ferromagnetic system for a given configura-

tion of sites and moments by introducing the magnetic order parameter ®𝑚,

®𝑚 =
1
𝑁

𝑁∑︁
𝑖=1

⟨®𝑠𝑖⟩. (1.1)

This is defined as the normalized sum of spin vectors over all sites in our system. Here,

⟨. . . ⟩ denotes the thermodynamic average. When the system is fully ordered, the magnetic

moment for all sites will be identical and the sum will take its maximum value. Contrarily,

for the fully disordered system, we can expect the value of the spins to be completely random.

They thus cancel each other, and the system becomes a paramagnet with ®𝑚 = 0

1.2. ISING MODEL

The Ising model is a simple mathematical model that can describe ferromagnetic and

antiferromagnetic systems [2]. We want to consider, in particular, a system of 𝑁 sites located

on a 𝑑-dimensional hypercubic lattice as illustrated in Figure 1.1. Each site is occupied by a

spin. We allow these spins to interact with each other. 𝐽𝑖 𝑗 denotes the interaction energy

between the spins at sites 𝑖 and 𝑗 .
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Figure 1.1. Hypercubic lattice for 𝑑 = 1, 2, 3. The principle site is the green dot in the center
of each lattice. Unfilled dots are the nearest neighbors to this site. In 𝑑 dimensions, the
number of nearest neighbors is 2𝑑.

In typical insulating magnets, the interaction strength decreases exponentially with

distance [3], allowing us to disregard the interactions from sites that are not nearest neighbors.

The Ising model describes the limit of a uniaxial magnet. The spins can therefore be

represented by classical variables that take values 𝜎𝑖 = ±1. We can now write the defining

Hamiltonian for the Ising model [4] as,

𝐻 = −
∑︁
<𝑖 𝑗>

𝐽𝑖 𝑗𝜎𝑖𝜎𝑗 − 𝜇𝐵
∑︁
𝑖

𝜎𝑖 (1.2)

The first term is a summation over all pairs of nearest neighbors. (Figure 1.1 illustrates how

the number of nearest neighbors increases, as our system goes to higher dimensions.)

The sign of the interaction 𝐽𝑖 𝑗 distinguishes ferromagnetic and antiferromagnetic

systems. For ferromagnets, neighboring spins prefer to be parallel to each other. This means

𝐽𝑖 𝑗 > 0 so that the energy is minimized when 𝜎𝑖 = 𝜎𝑗 . Analogously, that for antiferromagnets

the interaction, 𝐽𝑖 𝑗 < 0, which minimizes the energy when we have anti-parallel spin pairs

𝜎𝑖 = −𝜎𝑗 . The second term in our Hamiltonian is a summation over all individual sites. This

term describes the interaction between the spins and an external magnetic field 𝐵. 𝜇 is the

magnetic moment associated with a spin. In the next sections we will discuss solutions of

the Ising model for one and two dimensions. No exact solution exists above two dimensions,

but we can obtain approximate results via computer simulations.
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1.2.1. One Dimension. The one-dimensional Ising model is known to have an

exact solution. We will now summarize this solution and calculate, for later use, some

quantities, which are characteristic of one-dimensional magnetic behavior. This behavior

is fundamental to understanding weakly coupled spin chains in higher dimensions, as we

will see in section 2. Our solution will follow the transfer matrix approach [5] which is

simple and has a natural, albeit rigorous, generalization to two dimensions [6]. Consider a

one-dimensional Ising chain, as shown for the leftmost structure in Figure 1.1. We enforce

periodic boundary conditions (PBC), which effectively turns the chain into a closed loop

𝜎𝑁+𝑖 = 𝜎𝑖 . (1.3)

We can then put together the canonical partition function for an Ising chain of 𝑁 sites,

𝑍 =
∑︁
𝜎1=±1

∑︁
𝜎2=±1

∑︁
𝜎3=±1

· · ·
∑︁
𝜎𝑁=±1

exp(−𝛽𝐻) =
𝑁∏
𝑖

∑︁
𝜎𝑖=±1

exp(−𝛽𝐻). (1.4)

The Hamiltonian of the Ising chain can be written in a symmetric form:

𝐻 = −𝐽
𝑁∑︁
𝑖

𝜎𝑖𝜎𝑖+1 −
𝜇𝐵

2

𝑁∑︁
𝑖=1

(𝜎𝑖 + 𝜎𝑖+1), (1.5)

where we have assumed a uniform interaction strength between nearest neighbors for all

sites. Recall for a moment that 𝜎𝑖 = ±1. We can define matrix elements of an operator 𝐼 via

⟨𝜎𝑖 |𝐼 |𝜎𝑖+1⟩ = exp(𝛽𝐽
𝑁∑︁
𝑖

𝜎𝑖𝜎𝑖+1 + 𝜇𝐵
𝑁∑︁
𝑖=1

(𝜎𝑖 + 𝜎𝑖+1)). (1.6)

This 2 × 2 matrix is known as the transfer matrix. We can express the partition function in

terms of the matrix elements as,

𝑍 =
∑︁
𝜎𝑖=±1

∑︁
𝜎𝑖=±2

· · ·
∑︁

𝜎𝑖=±𝑁−1

∑︁
𝜎𝑖=±𝑁

⟨𝜎1 |𝐼 |𝜎2⟩ . . . ⟨𝜎𝑁−1 |𝐼 |𝜎𝑁⟩⟨𝜎𝑁 |𝐼 |𝜎1⟩
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=
∑︁
𝜎1=±1

⟨𝜎1 |𝐼𝑁 |𝜎1⟩ = 𝑇𝑟 (𝐼𝑁 ). (1.7)

The trace of this matrix is invariant under a similarity transformation [7]. So, we can express

𝑍 in terms of the eigenvalues of 𝐼

𝑍 = 𝑇𝑟 (𝐼𝑁 ) = 𝜆𝑁1 + 𝜆𝑁2 . (1.8)

We obtain the eigenvalues by solving the eigenvalue equation,

det(𝐼 − 𝜆𝐼) =

�������⟨+1|𝐼 | + 1⟩ − 𝜆 ⟨+1|𝐼 | − 1⟩

⟨−1|𝐼 | + 1⟩ ⟨−1|𝐼 | − 1⟩ − 𝜆

�������
=

�������exp(𝛽(𝐽+)) − 𝜆 exp(−𝛽𝐽)

exp(−𝛽𝐽) exp(𝛽(𝐽−)) − 𝜆

������� = 0

.

(1.9)

This leads to,

𝜆2 − 𝜆 exp(𝛽𝐽) (2 cosh(2𝜇𝐵𝛽)) + 2 sinh(2𝛽𝐽) = 0. (1.10)

Solving for 𝜆 results in,

𝜆 = exp(𝛽𝐽) cosh(2𝜇𝐵𝛽) ± (exp(−2𝛽𝐽) + exp(2𝛽𝐽) sinh2(𝜇𝐵𝛽))1/2. (1.11)

We now have two eigenvalues denoted by 𝜆1 and 𝜆2

𝜆1 = exp(𝛽𝐽) cosh(𝜇𝐵𝛽) + (exp(−2𝛽𝐽) + exp(2𝛽𝐽) sinh2(𝜇𝐵𝛽))1/2, (1.12)

𝜆2 = exp(𝛽𝐽) cosh(𝜇𝐵𝛽) − (exp(−2𝛽𝐽) + exp(2𝛽𝐽) sinh2(𝜇𝐵𝛽))1/2. (1.13)
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Figure 1.2. Dependence of the eigenvalues 𝜆1 and 𝜆2 on the inverse temperature 𝛽 and
external field 𝐵. All other parameters are taken to be constant, 𝐵 = 1, 𝐽 = 1 (left) and 𝛽 = 1,
𝐽 = 1 (right).

Comparing the two equations, it is clear that 𝜆1 > 𝜆2 as can also be seen in Figure 1.2, where

we plot 𝜆1 and 𝜆2 as functions of the inverse temperature 𝛽 and external magnetic field 𝐵.

Both terms in the partition function (1.8) grow exponentially with 𝑁 . In the thermodynamic

limit, as 𝑁 −→ ∞, 𝜆
𝑁
2
𝜆𝑁1

−→ 0. For macroscopic systems, the physical properties will therefore

be dominated by 𝜆1,

𝑍 ≈ 𝜆𝑁1 . (1.14)

From here, calculating thermodynamic quantities is relatively straightforward. Since we are

interested in the magnetic properties of this system studying the magnetization is the most

advantageous to find the transition temperature.

We start by calculating the Helmholtz free energy 𝐹:

𝐹 (𝐵,𝑇) = −1
𝛽

ln(𝑍), (1.15)

= −1
𝛽

ln[(exp(𝛽𝐽) cosh(𝜇𝐵𝛽) + (exp(−2𝛽𝐽) + exp(2𝛽𝐽) sinh2(𝜇𝐵𝛽))1/2]𝑁 ,

= −𝑁𝐽 − 𝑁

𝛽
ln(cosh(𝜇𝐵𝛽) + (exp(−4𝛽𝐽) + sinh2(𝜇𝐵𝛽))1/2). (1.16)
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(a) (b)

Figure 1.3. Dependence of the magnetization 𝑚 on 𝛽 and 𝐵. (a) Magnetization vs. inverse
temperature 𝛽. 𝐵 = 1 and 𝐽 = 1 are treated as constants. (b) Magnetizations vs. applied
field 𝐵. 𝛽 = 1 and 𝐽 = 1 are treated as constants.

𝐹 is related to the magnetization 𝑚 at constant 𝑇 ,

𝑚(𝐵,𝑇) = − 1
𝑁

(
𝜕𝐹

𝜕𝐵

)
𝑇

=
𝜇 sinh(𝜇𝐵𝛽)

(exp(−4𝛽𝐽) + sinh2(𝜇𝐵𝛽))1/2
. (1.17)

Before we calculate the susceptibility we will analyze this magnetization expression. We

can infer a lot from this quantity about how the system’s magnetic behavior changes with

an applied field 𝐵 and inverse temperature 𝛽. Looking at this function illustrated in Figure

1.3, right away we can see as 𝐵 −→ 0, for all finite 𝛽, 𝑚 −→ 0 which indicates that there is no

phase transition manifested in the system for finite 𝑇 . Instead, the system is always in the

paramagnetic phase. However if reduce temperature such that 𝛽 −→ ∞ for all nonzero 𝐵, the

magnetization takes the value,

𝑚𝑆 = 𝜇, (1.18)

where 𝑚𝑆 is called the saturation magnetization. This is the maximum magnetization our

system can produce and indicates that the system is in a state of perfect order. Thus, there

is a transition that has the critical temperature 𝑇𝑐 = 0! We can now obtain the magnetic
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susceptibility from,

𝜒 =
𝜕

𝜕𝐵
𝑚 =

𝜕

𝜕𝐵

𝜇 sinh(𝜇𝐵𝛽)
(exp(−4𝛽𝐽) + sinh2(𝜇𝐵𝛽))1/2

. (1.19)

=
𝜇2𝛽 exp(−4𝛽𝐽) cosh(𝜇𝛽𝐵)

(exp(−4𝛽𝐽) + sinh2(𝜇𝛽𝐵))3/2
. (1.20)

We are especially interested in the low-field regime in this work, so we let 𝐵 −→ 0. We can

immediately state cosh(2𝜇𝛽𝐵) −→ 1 and, sinh2(2𝜇𝛽𝐵) −→ 0. This gives an expression for

the temperature dependence of the ’low-field’ susceptibility

𝜒(𝑇) = 𝜇2𝛽 exp(−4𝛽𝐽)
(exp(−4𝛽𝐽))3/2 = 𝜇2𝛽 exp(−2𝛽𝐽). (1.21)

which we will use to characterize the 1D effects we see in more complex systems later in

this work. We can see that the zero-temperature transition is also reflected in this quantity by

the distinct singularity of 𝜒 at 𝑇 = 0.

1.2.2. Two Dimensions. In this section, we will show the exact solution in 𝑑 = 2

(the only other dimension with an exact solution). To visualize this system, instead of a

single one-dimensional chain, we can imagine a series of these chains, all connected by

additional exchange interactions. If we wrap all of these chains around, like we did for

the one-dimensional case, the shape of the two-dimensional case with periodic boundary

conditions in both directions appears like a torus. Figure 1.4 illustrates this shape.

We can attack the two-dimensional case with a transfer matrix approach analogous to

the one-dimensional case. However, this approach is very involved mathematically compared

to the one-dimensional case [8]. An exact solution can only be found in zero field. The

canonical partition function for the two-dimensional Ising model without field was given

exactly first by Onsager [9] and then through the transfer matrix approach by Kaufamn and
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Figure 1.4. A 2D lattice with periodic boundary conditions represented as torus shape.

Onsager [10]. The exact solution for the free energy can be expressed as,

−𝛽𝐹 = ln(2)+ 1
8𝜋2

∫ 2𝜋

0
𝑑𝜃1

∫ 2𝜋

0
𝑑𝜃2 ln[cosh2(2𝛽𝐽)−sinh(2𝛽𝐽) cos(𝜃1)−sinh(2𝛽𝐽) cos(𝜃2)] .

(1.22)

In contrast to one dimension, this solution features a phase transition at a finite temperature

𝑇𝑐 defined by,

sinh2(2𝐽𝛽𝑐) = 1. (1.23)

Solving for 𝑇𝑐 yields

𝑇𝑐 = 2.269185
𝐽

𝐾𝐵
. (1.24)

Close to 𝑇𝑐, the behavior of observables in Onsagers solution is governed by power laws.

For example, the magnetization behaves as

𝑚 ∼ |𝑇 − 𝑇𝑐 |𝛽 (1.25)
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where 𝛽 = 1/8 is the order parameters critical exponent. Analgously, the susceptibility

follows the relation

𝜒 ∼ |𝑇 − 𝑇𝑐 |−𝛾 (1.26)

where 𝛾 = 7/4 is the susceptibility exponent. Similarly, the correlation length scales

according to the function

𝜉 ∼ |𝑇 − 𝑇𝑐 |−𝜈 (1.27)

where 𝜈 = 1 is the correlation length exponent. This wraps up the analytical solutions that

can be obtained for the Ising model. Results for 𝑑 > 2 can only be found via approximate

methods or computer simulations such as Monte Carlo simulations. In the next section, we

will introduce these methods, and how we can employ them to accurately approximate the

behavior of our system.

1.3. MONTE CARLO SIMULATIONS

In higher dimensions, 𝑑 > 3 the Ising model cannot be solved exactly. In this section,

we introduce Monte Carlo methods for the Ising model. These methods permit an effective

evaluation of thermodynamic quantities as our only limitation becomes computational effort.

According to statistical mechanics, the probability of a particular spin configuration

®𝜎 = (𝜎1, . . . , 𝜎𝑁 ) in thermal equilibrium is given by the Boltzmann distribution,

𝑃𝐵 (®𝜎) =
1
𝑍

exp(−𝛽𝐻 (®𝜎)). (1.28)

Now let us consider the average of some generic observable 𝐴(®𝜎)

⟨𝐴(®𝜎)⟩𝑇 =
1
𝑍

∫
exp(−𝛽𝐻 (®𝜎))𝐴(®𝜎)𝑑𝑥. (1.29)
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In a Monte Carlo simulation, we replace the sum over all spin configurations, ®𝜎 by a sum over

a randomly chosen subset of 𝑀 spin configurations. If the probability of a spin configuration

to be in the subset is 𝑃(®𝜎), the average of an observable can be written as

⟨𝐴(®𝜎)⟩ =
∑𝑀
𝑙=1 exp(−𝛽𝐻 ( ®𝜎𝑙)𝐴( ®𝜎𝑙)/𝑃( ®𝜎𝑙))∑𝑀

𝑙=1 exp(−𝛽𝐻 (®𝜎)/𝑃(®𝜎))
. (1.30)

If we choose 𝑃(𝜎𝑙) to be the Boltzmann probability 𝑃𝐵 (𝜎𝑙), we can see then this expression

easily reduces to

⟨𝐴(®𝜎𝑙)⟩ =
1
𝑀

𝑀∑︁
𝑙=1

𝐴(®𝜎𝑙). (1.31)

We are now left with the question of how to generate such a representative subset of spin

configurations with the correct Boltzmann probability. In the next section, we will discuss

the work of Metropolis and coworkers as well as their algorithm which is instrumental in this

thesis. We will then further discuss an algorithm by Wolff that increases our computational

efficiency, in addition to a discussion on calculating observables.

1.3.1. Metropolis Algorithm. The Metropolis [11] algorithm is based on the idea

of generating the desired subset of spin configurations as a Markov Chain [12]. This means,

given a state ®𝜎𝑙 we can construct each successive state, ®𝜎𝑙′ based on the previous state and

some transition probability. Let us denote the transition probability as𝑊 (®𝜎𝑙 −→ ®𝜎𝑙′). In the

steady state, the probability 𝑃(®𝜎𝑙) of state ®𝜎𝑙 to appear in the Markov chain fulfills

𝑃(®𝜎𝑙)𝑊 (𝜎𝑙 −→ ®𝜎𝑙′) = 𝑃(®𝜎𝑙′)𝑊 (®𝜎𝑙′ −→ 𝜎𝑙) (1.32)

which gives the detailed balance condition,

𝑊 (𝜎𝑙 −→ 𝜎𝑙′)
𝑊 (𝜎𝑙′ −→ 𝜎𝑙)

=
𝑃(𝜎𝑙′)
𝑃(𝜎𝑙)

. (1.33)
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If we wish the probabilities 𝑃(®𝜎) to be Boltzmann probabilities, this implies

𝑊 (𝜎𝑙 −→ 𝜎𝑙′)
𝑊 (𝜎𝑙′ −→ 𝜎𝑙)

=
exp(−𝛽𝐻 ( ®𝜎𝑙′))
exp(−𝛽𝐻 ( ®𝜎𝑙))

= exp(−𝛽(𝐻 ( ®𝜎𝑙′) − 𝐻 ( ®𝜎𝑙))) = exp(−𝛽(Δ𝐻)). (1.34)

Here Δ𝐻 is the change in the Hamiltonian when we update the configuration.

We are now in a position to explicitly describe the steps our Metropolis algorithm

takes for a single update of our Ising model, see Table 1.1. Figure 1.5 gives an example of

a 2D lattice of sites being indexed by the Metropolis algorithm. To define the transition

probabilities, we need to consider two cases for Δ𝐻, Δ𝐻 ≤ 0 and Δ𝐻 > 0. Beginning with

the case Δ𝐻 ≤ 0, the set𝑊 (®𝜎𝑙 −→ ®𝜎𝑙′) = 1. The reversed update is that where Δ𝐻 > 0 such

that𝑊 (𝜎𝑙′ −→ 𝜎𝑙) = exp(−𝛽(Δ𝐻)). Our ratio is thus

𝑊 [𝜎𝑙 −→ 𝜎𝑙′]
𝑊 [𝜎𝑙′ −→ 𝜎𝑙]

=
1

exp(𝛽(Δ𝐻) = exp(−𝛽(Δ𝐻)) (1.35)

as required by the detailed balance condition (1.30)! The Metropolis algorithm is thus a

valid Monte Carlo algorithm. However, it becomes inefficient for larger systems at higher

dimensions, especially close to the phase transition where the spin configuration contains

large chunks of parallel spins. This phenomenon is called critical slowing down. Because of

critical slowing down, the number of Monte Carlo sweeps (attempted flips per site) required

for equilibration increases very fast, approximately proportional to 𝐿2, close to the phase

transition. To overcome the critical slowing down we will now introduce the Wolff algorithm.

Table 1.1. Steps of a single iteration of the Metropolis algorithm.

Step Description
1 Choose a site: Select a single site at random with random number generator

2 Calculate Δ𝐻: Compute the change in the energy Δ𝐻 caused by flipping the spin at
the chosen site.

3 If Δ𝐻 ≤ 0: Flip the spin!
4 If Δ𝐻 > 0: Flip the spin with probability exp(−𝛽Δ𝐻).
5 Repeat: Loop back to step 1 and repeat the procedure.
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Figure 1.5. 2D lattice illustrating a single Metropolis spin-flip update for a randomly indexed
site (x). The nearest neighbors of this site are connected via thick solid lines. The solid dots
represent 𝜎𝑖 = +1, hollow dots (including the chosen site) represent 𝜎𝑖 = −1.

1.3.2. Wolff Algorithm. The second Monte Carlo algorithm that we employ

in this thesis is the Wolff algorithm [13]. This algorithm is still a Markov chain spin-flip

algorithm like the Metropolis algorithm. However, rather than flipping individual spins,

the Wolff algorithm instead clusters identical spins, reducing the computational cost of our

simulations for physically realizable systems. Specifically, it reduces the critical slowing

down near the phase transition, which we observe when using the Metropolis algorithm. To

derive the Wolff algorithm, we define two types of sites with respect to the site randomly

selected as the start site of a cluster. 𝜎+ sites have a spin value that makes them parallel to

the initial site. 𝜎−, on the other hand, are sites that have a spin value in the opposite direction.

The Wolff algorithm iteratively considers the neighbors of sites belonging to the cluster,

adjacent 𝜎+ sites are bonded into the cluster 𝐶 with probability 𝑝+,

𝑝+ = 1 − exp(−2𝛽𝐽). (1.36)
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The corresponding bond is defined as an ’accepted’ link, Figure 1.6 gives an example of a

cluster forming with a set of these links. We denote a given cluster by 𝐶 and its border by

𝜕𝐶. The probability that a link between two 𝜎+ sites will not be activated is given by

𝑞+ = 1 − 𝑝+ = exp(−2𝛽𝐽). (1.37)

The complete probability for the construction of the cluster for an update in the configuration

is

𝑊 [𝜎𝑙 −→ 𝜎𝑙′] = 𝑝𝑖 (
∏
𝑚+∈𝐶

𝑝+) (
∏
𝑚+∈𝜕𝐶

𝑞+) (1.38)

where 𝑝𝑖 is the probability of selecting a particular starting site. 𝑚+ counts links between 𝜎+

sites, while 𝑚− counts links between opposite spins. The reversed update will still involve

the same cluster 𝐶. It is clear that the probability 𝑝𝑖 will be the same in both cases. We can

write out the reversed probability for the reversed update as

𝑊 [𝜎𝑙′ −→ 𝜎𝑙] = 𝑝𝑖 (
∏
𝑚+∈𝐶′

𝑝+) (
∏

𝑚+∈𝜕𝐶′
𝑞+). (1.39)

Table 1.2. Steps of a single iteration of the Wolff algorithm.

Step Description
1 Choose a site: Select a single seed site at random with random number generator

2
Construct cluster: Consider all nearest neighbors connected to initial site. If
a neighbor spin is parallel to the seed spin, add to cluster with probability 𝑝+ =

1 − exp(−2𝛽)
3 Continue construction: Consider the set of sites added in the previous update.

Repeat step 2 for each of these sites.
4 Further continue construction: Continuously apply step 3

for each subsequent update until no new sites are added by the update.
5 Flip and Repeat: Flip entire cluster and proceed back to step 1 to construct

a new cluster.
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We can write the ratios of these probabilities as

𝑊 [𝜎𝑙 −→ 𝜎𝑙′]
𝑊 [𝜎𝑙′ −→ 𝜎𝑙]

=
(∏𝑚+∈𝐶 𝑝+) (

∏
𝑚+∈𝜕𝐶 𝑞+)

(∏𝑚′
+∈𝐶′ 𝑝+) (

∏
𝑚′

+∈𝜕𝐶′ 𝑞+)
. (1.40)

Viewing Figure 1.6 can help visualize the two updates we’re discussing. The 𝑚+ links

making up the internal part of the cluster 𝐶, will be the same exact 𝑚+ links making up the

internals of the updated cluster 𝐶′. This makes our products of probability 𝑝+ equal for both

clusters so that our ratio becomes

𝑊 [𝜎𝑙 −→ 𝜎𝑙′]
𝑊 [𝜎𝑙′ −→ 𝜎𝑙]

=
(∏𝑚+∈𝜕𝐶 𝑞+)
(∏𝑚′

+∈𝜕𝐶′ 𝑞+)
=

exp(−2𝛽𝐽𝑁+)
exp(−2𝛽𝐽𝑁′

+)
(1.41)

where 𝑁+ denotes the number of 𝑚+ border links. However, for the border of our cluster

𝜕𝐶, the links 𝑚+ are instead the links 𝑚− for the updated cluster 𝜕𝐶′. We can write this

mathematically as

exp(−𝛽𝐽𝑁+) = exp(𝛽𝐽𝑁′
−)

exp(−𝛽𝐽𝑁′
+) = exp(𝛽𝐽𝑁−).

(1.42)

Figure 1.6. Wolff algorithm cluster formation example where all links are activated. Accepted
links are bolded and encapsulated by the highlighted dotted line which form the cluster.
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This allows us to write the ratio as

𝑊 [𝜎𝑙 −→ 𝜎𝑙′]
𝑊 [𝜎𝑙′ −→ 𝜎𝑙]

=
exp(−𝛽𝐽𝑁+) exp(−𝛽𝐽𝑁+)
exp(−𝛽𝐽𝑁′

+) exp(−𝛽𝑁′
+)

=
exp(−𝛽𝐽𝑁+) exp(𝛽𝐽𝑁′

−)
exp(−𝛽𝐽𝑁′

+) exp(𝛽𝐽𝑁−)

=
exp(𝛽𝐽𝑁′

+) exp(𝛽𝐽𝑁′
−)

exp(𝛽𝐽𝑁+) exp(𝛽𝐽𝑁−)

=
exp(𝛽𝐽𝑁′)
exp(𝛽𝐽𝑁) .

(1.43)

The contribution of the boundary sites to the total energy is 𝐻 (𝜎𝑙) = −𝐽𝑁 . Applying this,

we obtain the same condition for the ratio of probabilities for the Metropolis case

𝑊 [𝜎𝑙 −→ 𝜎𝑙′]
𝑊 [𝜎𝑙′ −→ 𝜎𝑙]

= exp(−𝛽Δ𝐻). (1.44)

The update and reversed update both flip the same exact internal sites with one another

which is what makes the above result possible. The only changes between these two updates

will be exclusively at the boundary links for each cluster. Thus, the Wolff algorithm fulfills

the detailed balance condition (1.33) and is thus a valid Monte Carlo algorithm. The Wolff

algorithm greatly improves the critical slowing down, the required number of sweeps is only

weakly dependent on system size.

1.3.3. Numerical Results for Higher Dimensional Ising Model. The 3D

Ising model has yet to be solved exactly [8]. However, we can study it, along with lower-

dimensional models using Monte Carlo Simulations. Different from the 2D case, which can

be defined on a 𝐿𝑥 × 𝐿𝑦 square lattice, the 3D case can be defined on a cubic lattice with

dimensions 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧. Consequently, the number of nearest neighbors for a given site has

also increased from 4 to 6. Unlike the 1D and 2D cases, the periodic boundary conditions are

not as simple to visualize through a ’chain’ or ’torus’. This does not mean we can not enforce

them, though, and it is easiest to express it mathematically. Denoting the spin 𝑚 coordinates

𝑥, 𝑦, 𝑧 by 𝜎(𝑥, 𝑦, 𝑧), the periodic boundary conditions read 𝜎(𝑥 + 𝐿𝑥 , 𝑦, 𝑧) = 𝜎(𝑥, 𝑦, 𝑧) and
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Figure 1.7. Susceptibility of the 2D Ising model as a function of temperature for different
system sizes 𝐿, diverging at 𝑇𝑐 ≈ 2.27, in agreement with Onsagers value 𝑇𝑐 ≈ 2.269 [9].

analogous for the other directions. Here 𝐿𝑥 is the linear system size in the 𝑥 direction. We

will now make use of the methods introduced, and implement the Metropolis algorithm to

generate the necessary distribution of spins we need to accurately characterize the system.

We investigate observables related to the magnetization to determine when a phase transition

takes place. Specifically, we will calculate the susceptibility which can be expressed as

𝜒 =
𝜕𝑚

𝜕𝐵
= 𝑁𝛽(⟨𝑚2⟩ − ⟨𝑚⟩2) (1.45)

where 𝑚 is the magnetization of a particular spin configuration,

𝑚( [𝜎]) = 1
𝑁

∑︁
𝑖

𝜎𝑖 . (1.46)

The susceptibility, which is a response quantity, contains the variance of the magnetization

values calculated within the system. This is an example of the fluctuation-response theorem.

The fluctuations in the magnetization increase as the system approaches 𝑇𝑐. This causes 𝜒 to

diverge towards infinity at 𝑇𝑐 in the thermodynamic limit. This is illustrated in Figure 1.7
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which shows 𝜒 vs 𝑇 for the 2D Ising model, for 𝐿𝑥 = 𝐿𝑦 = 𝐿 = 12, 24, 36, 48, 60. As we

can see, right at the calculated 𝑇𝑐 in equation (1.24), the susceptibility has a strong peak

whose maximum diverges towards infinity for system sizes 𝐿 −→ ∞. More precisely, the

peak position 𝑇max approaches 𝑇𝑐 in the thermodynamic limit 𝑁 −→ ∞. One can thus use an

extrapolation of 𝑇max to infinite system size to find 𝑇𝑐.

An additional useful quantity in our simulations, is the Binder cumulant which is a

tool towards identifying second order phase transitions. It is defined as [12]

𝑔 =

[
1 − ⟨|𝑚 |4⟩

3⟨|𝑚 |2⟩2

]
𝑑𝑖𝑠

. (1.47)

The second term contains the ratio of the fourth moment of the magnetization and

the second moment squared. This is designed to focus on the fluctuations of our system

which gives this quantity the power to identify 𝑇𝑐 by identifying scale-invariant fluctuations

that are unique to the system at the critical temperature. Above 𝑇𝑐 in the paramagnetic phase,

the system contains many independently fluctuating spins. The distribution of 𝑚 is thus, a

Gaussian centered at zero. This implies ⟨𝑚4⟩ = 3⟨𝑚2⟩2 and 𝑔 = 0 in the thermodynamic limit.

Below 𝑇𝑐 in the ordered phase, the system is magnetic and ⟨𝑚4⟩ ≈ ⟨𝑚2⟩2 ≈ 1. The value of

the Binder cumulant therefore takes the maximum value, 𝑔 = 2/3 in the thermodynamic limit.

At 𝑇𝑐 however, 𝑔 captures the critical fluctuations, which are scale-invariant i.e, independent

of 𝐿. Thus by plotting the Binder cumulant as a function of temperature, for a variety of

system sizes 𝐿3, we can obtain 𝑇𝑐 by identifying the point where all systems have the same

value of 𝑔.

The Binder cumulant crossing is illustrated in Figure 1.8 for a set of sizes, 𝐿 =

12, 24, 36, 48. As explained previously, 𝑇𝑐 will be the temperature value where 𝑔 is identical

for all system sizes. This is found in our case to be a temperature of about 4.51, in agreement

with literature values[9].
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Figure 1.8. Binder cumulant for 3D Ising model as a function of temperature for different
system sizes 𝐿. The curves for different 𝐿 cross at 𝑇 ≈ 4.51 which gives an estimate of 𝑇𝑐.

1.4. QUENCHED DISORDER

So far, we have established the underpinning for the Ising model and how to obtain

its thermodynamics via numerical simulations. We have treated all sites identically with no

defects or disorder. In experiments, it is notoriously difficult to obtain or create a perfectly

pure system, even in extremely controlled environments. Physically realizable systems often

have some degree of disorder as a result of defects that can form in their creation. Defects in

the atomic positions or species of a sample are common examples that can cause disorder

and influence the macroscopic properties of the system. In solids, the defects are usually

time-independent over the time span of an experiment. The ’frozen’ nature of the defects in

the system is what gives this form of disorder the name ’quenched’ disorder. In this section,

we will implement quenched disorder in the Ising model. We look to answer the question,

how does quenched disorder affect the phase transition of an Ising model?

1.4.1. Diluted Ising Model. One important type of quenched disorder is site

dilution in which vacancies or non-magnetic atoms randomly replace magnetic atoms. The

strength of the dilution can be characterized by an impurity concentration 𝑝 = 𝑁imp/𝑁 where
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Figure 1.9. 2D lattice with site dilution. Filled boxes are magnetic sites. Empty boxes are
vacancies. Clusters of spins isolated from the system by impurities are highlighted in red
(color). Examples are shown for three dilutions (from left) 𝑝 = 0.10, 0.30, 0.90

𝑁imp is the number of impurities and 𝑁 is the total number of lattice sites. Creating a system

with a particular impurity concentration can be as simple as randomly placing vacancies

around the lattice with probability 𝑝. Figure 1.9 displays examples of a two-dimensional

lattice with site dilution for different 𝑝.

The diluted form of the Ising model Hamiltonian is a deceptively simple modification

of the Ising model introduced previously. The Hamiltonian reads

𝐻 = −
∑︁
<𝑖 𝑗>

𝐽𝑖 𝑗𝜖𝑖𝜖 𝑗𝜎𝑖𝜎𝑗 (1.48)

where the only addition are the quenched random variables 𝜖𝑖. 𝜖𝑖 decides whether to make a

site an impurity (𝜖𝑖 = 0) or a magnetic site (𝜖𝑖 = 1).

In the simplest case we can independently assign an impurity to each site with

probability (concentration parameter) 𝑝. This is the definition of ”uniform random site

dilution”. Uniform random vacancy placement is an assumption and may not accurately

describe the system. For some magnetic systems, it is known that the vacancy distribution

is strongly non-uniform [14]. We do not consider such cases in this thesis, and limit our

discussion of dilution to that of perfectly uniform random site dilution.
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In the presence of random site dilution, the exact impurity positions vary from

sample to sample. The physical properties of two (finite-size) samples are thus different,

even if they have the same impurity concentration. In the thermodynamic limit, physical

properties are expected to be self-averaging. They are therefore best represented by an

ensemble average over many disorder configurations. The number of configurations needed

in computer simulations depends on the details of the system and on the strength of the

disorder-influenced fluctuations. This can be monitored via the variance of appropriate

observables.

1.4.2. Percolation and Magnetic Phase Boundary. Placing vacancies within

our system reduces the magnetic interactions of a given site and therefore suppresses the

tendency towards magnetic order. However, the system remains ferromagnetic at the lowest

temperatures until the vacancy concentration reaches a critical value 𝑝𝑐, where there are so

many vacancies in the system that it is no longer possible to construct a connected cluster of

magnetic sites that spans the entire system (as in the rightmost case in Figure 1.9). This

in turn means that the system can no longer maintain long-range magnetic order. The

complement of this critical value (i.e, the minimum concentration of magnetic sites) is called

the percolation threshold 𝑃𝑐 = 1 − 𝑝𝑖. We use capital 𝑃 to denote the concentration of

occupied sites and 𝑝 to denote the concentration of vacancies. For a system where 𝑃 ≥ 𝑃𝑐,

the system can still maintain order and exhibit ferromagnetic behavior. Once 𝑃 < 𝑃𝑐, the

system features only finite-size clusters, destroying long-range order and making the system

exhibit paramagnetic behavior. We can expect our system to have the highest transition

temperature when no magnetic sites are removed (i.e for 𝑇𝑐 −→ 𝑇𝑐−𝑚𝑎𝑥 𝑃 −→ 1). In contrast,

for 𝑃 −→ 𝑃𝑐, 𝑇𝑐 −→ 0. How does the critical temperature 𝑇𝑐, change as the impurity

concentration is increased from 0 to 𝑝𝑐? Since we have already put together a working

numerical solution of the 3D Ising model, it is opportunistic to implement dilution into

the program there and study directly the effect on the phase boundary 𝑇𝑐 (𝑝). Random site

dilution, where the diluted sites are treated as vacancies, can be easily implemented by
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Figure 1.10. Magnetic phase boundary for diluted 3D Ising model on a cubic lattice with
PBC. Dots represent the calculated data, line is a fit to the function 𝑇𝑐 = 𝐶

𝑙𝑛|𝑝−𝑝𝑐 | .

means of a random number generator. It is an iterative procedure to construct the phase

boundary within our simulations. We consider a set of impurity concentrations between

zero and the percolation threshold 𝑝𝑐 = 1 − 𝑃𝑐, where we expect 𝑇𝑐 = 0. The percolation

threshold of a simple cubic lattice is 𝑃𝑐 = 0.3116077(3) [15]. We consider the following

set of dilutions in the simulations

𝑝𝑖 = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.62, 0.64, 0.66, 0.68, 0.70] . (1.49)

𝑝 = 0 is the clean, impurity-free system we have already simulated in a previous section.

Considering each concentration 𝑝, we run a series of Monte Carlo simulations that determine

the critical temperature. The results are detailed in Figure 1.10. Close to the percolation

threshold, the dependence of the 𝑇𝑐 on 𝑝 is of logarithmic type, [16]

𝑇𝑐 =
𝐶

ln(𝑝 − 𝑝𝑐)
. (1.50)
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1.4.3. Harris Criterion. We have seen that disorder can change the transition

temperature of a phase transition. Can it also change universal properties such as the critical

exponents? This question was answered by Harris [17] who discovered the inequality that

describes the stability of a critical point in the clean system against disorder. It reads,

𝜈𝑑 > 2 (1.51)

where 𝑑 is the spatial dimensionality and 𝜈 is the critical exponent describing the divergence of

the magnetic correlation length 𝜉 ≃ |𝑇 −𝑇𝑐 |−𝜈 1. Harris derived this criterion by considering

the variations of the local critical temperature from region to region in the sample. When

these variations are large, it leads to some regions being in the paramagnetic phase and

others being in the ferromagnetic phase. This makes a uniform transition temperature for the

system impossible [17]. Harris found that the strength of the local 𝑇𝑐 variations diverges as

the critical point is approached if the criterion is violated such that 𝜈 < 2
𝑑

. However, if the

Harris criterion is fulfilled, 𝜈 > 2
𝑑

, the system becomes less disordered as the critical point is

approached. The thermodynamic observables are self-averaging, and the critical behavior is

the same as for the clean system [18].

1.4.4. Quantum (Transverse-field) Ising Model. So far, we have primarily

focused on classical phase transitions, where the critical point is driven by a change in

temperature. However, phase transitions can also occur at absolute zero temperature (𝑇 = 0).

These zero-temperature transitions are known as quantum phase transitions, and are driven

by changes to other parameters, for example, pressure and magnetic field. A prototypical

example of a model with such a transition is the transverse-field Ising model, given by the

Hamiltonian,

𝐻 = −𝐽
∑︁
⟨𝑖, 𝑗⟩

𝜎𝑧
𝑖
𝜎𝑧
𝑗
− ℎ

∑︁
𝑖

𝜎𝑥𝑖 (1.52)

1The correlation length 𝜉 characterizes the decay of the spin-spin correlation function with distance
⟨𝑆𝑖𝑆 𝑗⟩ − ⟨𝑆𝑖⟩⟨𝑆 𝑗⟩ ∼ exp(𝑟𝑖 𝑗/𝜉)
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where 𝜎𝑧
𝑖

and 𝜎𝑥
𝑖

are Pauli matrices that represent the components of the spin operator at

site 𝑖. The 𝐽 term favors ferromagnetism, while the transverse field ℎ induces quantum

fluctuations. This follows because the Pauli matrix 𝜎𝑥
𝑖

can be decomposed into the spin-flip

operators 𝜎𝑥
𝑖
= 𝜎+

𝑖
+ 𝜎−

𝑖
. Thus when the site interaction strength 𝐽 dominates relative to

ℎ (i.e. 𝐽 ≫ ℎ), the system favors a ferromagnetic ground state. In contrast, when ℎ ≫ 𝐽,

the transverse magnetic field disrupts the alignment of spins causing the system to have a

paramagnetic ground state.

Disorder effects at quantum phase transitions are generically stronger than those of

classical transitions [18, 19]. This has been shown, for example, for the one-dimensional

random transverse field Ising chain, with the Hamiltonian

𝐻 = −
∑︁
𝑖

𝐽𝑖𝜎
𝑧
𝑖
𝜎𝑧
𝑖+1 −

∑︁
𝑖

ℎ𝑖𝜎
𝑥
𝑖 (1.53)

where 𝐽𝑖 and ℎ𝑖 are random variables. Fisher [20] used a strong-disorder renormalization

group approach to investigate the quantum phase transition in this problem, showing that

it is of exotic infinite-randomness type. Unlike conventional critical points, observable

distributions (e.g., correlations) broaden without bound in the thermodynamic limit. In such

models, observables follow power laws (e.g., susceptibility, correlation length). However,

at an infinite-randomness point, the dynamical scaling is governed by activated scaling,

featuring an exponential relationship between correlation time and correlation length,

ln(𝜉𝜏) ∼ 𝜉𝜓 where 𝜓 is the so-called tunneling exponent. For the 1D transverse-field Ising

model, 𝜓 takes the value 1/2. At a conventional critical point, the dynamical scaling is of

power-law type instead, 𝜉𝜏 ∼ 𝜉𝑧, where 𝑧 is the dynamical exponent. This behavior change

is a dramatic shift from the scaling laws and behavior that are characteristic of the classical

Ising model.
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ABSTRACT

CoNb2O6 is a unique magnetic material. Its quantum critical behavior has been

shown to belong to the one-dimensional transverse-field Ising universality class. This

behavior is facilitated by the structural arrangement of magnetic Co2+ ions in nearly isolated

zig-zag chains. In this work, we investigate the effect of random magnetic site dilution on

the critical properties of this system. To this end, we develop an anisotropic site-diluted 3D

transverse-field Ising model. We find that the disorder leads to unconventional activated

scaling behavior at the quantum critical point. Interestingly, the critical exponents of

the quantum phase transition are in good agreement with those of the disordered 3D

transverse-field Ising model, despite the strong spatial anisotropy.

Keywords: Cobalt Niobate, Quantum Phase Transition, Infinite Randomness, Disordered

Ising Model



26

Figure 1. Crystal Structure of CoNb2O6. Atom positions taken from [1].

1. INTRODUCTION

Recent years have seen several interesting studies of the magnetic material cobalt

niobate, CoNb2O6. The material orders magnetically below about 3K. At the lowest

temperatures, it undergoes a quantum phase transition (QPT) as a function of a magnetic field

applied along the crystallographic 𝑏-axis [2]. An intriguing result from these experimental

studies is that the critical behavior of the QPT is well described by the one-dimensional

transverse-field Ising model (TFIM). This alignment of nature and theory is a result of

CoNb2O6s fascinating crystal structure [3]. CoNb2O6 forms in a columbite structure as

shown in Figure 1. The magnetic Co2+ ions have an effective moment of spin-1/2, and are

embedded within a three-dimensional lattice of NbO6 octahedrals. Along the 𝑐 direction,

the Co2+ atoms have strong magnetic interactions with one another and form well-coupled,

zig-zagging chains of magnetic sites. These ’one-dimensional’ chains are coupled to one
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another in the system via weak inter-chain interactions. Magnetization measurements and

neutron scattering experiments showed the exchange interactions in these weak directions,

are about 10-50 times weaker than those along the strongly coupled chains [2, 4]. Thus,

we assume that these weak couplings have a relatively small influence on the critical

behavior of the pure system, confirmed by the one-dimensional TFIM universality class

observed experimentally [2]. More recent investigations into cobalt niobate have shown

that its magnetic behavior is considerably more complicated. In a conventional TFIM, the

ferromagnetic state features two degenerate ground states with static domain walls at zero

field. However, terahertz spectroscopy experiments have shown that for CoNb2O6, the

domain wall are already mobile even with no transverse magnetic field applied [5]. This

’quantum motion’ of the domain walls does not fit with the TFIM framework proposed

before, and reflect additional complications to the magnetic behavior. It has therefore been

proposed that even though the quantum critical behavior is well described by the 1D TFIM

universality class, the complete magnetic properties are better described by a twisted Kitaev

chain [5].

In this work, we investigate the effects of quenched disorder on the QPT in this

system. Specifically, we consider site dilution via the substitution of magnetic Co2+ with

vacancies or non-magnetic atoms. The insertion of such vacancies greatly challenges the

formation of long-range magnetic order in the system. For the pure system without vacancies,

magnetic correlations can be established with relative ease along the chains of magnetic ions

in the 𝑐 direction. A weak inter-chain coupling is then sufficient to produce long-range order.

However, the substitution of magnetic sites with non-magnetic ones ’breaks’ the strongly-

coupled chains, forcing the system to rely on the significantly weaker inter-chain interactions

to reach long-range magnetic order, greatly complicating the magnetic interactions at play.

To model this physical situation and its effect on the quantum phase transition,

we propose a disordered quasi-one-dimensional TFIM. This is constructed from a three-

dimensional TFIM, where spatially anisotropic interactions and site dilution are implemented.
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We then map the quantum Hamiltonian onto an anisotropic 4D classical Ising model with

columnar disorder. Monte Carlo methods that make use of cluster algorithms are used to

perform the calculations and finite-size scaling techniques are used for the data analysis.

Specifically, we study the unconventional scaling behavior of this quantum phase transition

due to the presence of site dilution and demonstrate that it belongs to the disordered

three-dimensional TFIM universality class, despite the strong spatial anisotropy of the

Hamiltonian.

2. MODEL

Experimental observations have found that the QPT of pure cobalt niobate is well

described by the one-dimensional TFIM. As discussed in section 1, the presence of site

dilution makes incorporating weak inter-chain couplings into the model crucial, as magnetic

long-range order is impossible otherwise. Thus we begin by defining the Hamiltonian for

the 3D anisotropic site-diluted TFIM on a cubic lattice [6],

𝐻 = −𝐽𝑠
∑︁
⟨𝑖, 𝑗⟩𝑠

𝜖𝑖𝜖 𝑗𝜎
𝑧
𝑖
𝜎𝑧
𝑗
− 𝐽⊥

∑︁
⟨𝑖, 𝑗⟩⊥

𝜖𝑖𝜖 𝑗𝜎
𝑧
𝑖
𝜎𝑧
𝑗
− 𝐵

∑︁
𝑖

𝜖𝑖𝜎
𝑥
𝑖 . (1)

The first term represents interactions between nearest neighbors along the strong chain,

indexed by ⟨𝑖, 𝑗⟩𝑠, with an interaction strength 𝐽𝑠. The z-component Pauli matrices 𝜎𝑧
𝑖

govern the spin interactions between sites on this chain. The second term accounts for

interactions in the two spatial directions perpendicular to the chains, indexed by ⟨𝑖, 𝑗⟩⊥.

These sites are linked by the interaction strength 𝐽⊥. The ratio 𝐽⊥/𝐽𝑠 tunes the anisotropy of

interactions in the system. In order to properly incorporate the physics of cobalt niobate, 𝐽⊥

must be chosen to be sufficiently weak, such that 𝐽𝑠 ≫ 𝐽⊥. We will return to the values of

𝐽𝑠 and 𝐽⊥ in a later section. The third term represents the transverse field 𝐵, which affects

all sites uniformly and couples to the 𝑥-component Pauli matrices 𝜎𝑥
𝑖

. These operators can

be decomposed as 𝜎𝑥
𝑖
= 𝜎+

𝑖
+ 𝜎−

𝑖
, corresponding to spin-flip operators that toggle between
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spin-up and spin-down states. Quantum fluctuations introduced by the transverse field 𝐵

can thus disrupt the long-range ferromagnetic order in the system when the field strength

reaches a critical threshold 𝐵𝑐. This threshold is the quantum critical point which is studied

in this work. Finally, 𝜖𝑖 is a quenched random variable that accounts for site dilution. It takes

a value 1 for a magnetic site with probability 1 − 𝑝, and 0 for a substituted vacancy with

probability 𝑝. Note that we do not include the more complicated interactions discussed in

Ref. [5] as they are not expected to affect the critical behavior.

2.1 QUANTUM TO CLASSICAL MAPPING

Our computer simulations of this quantum system can be simplified by mapping the

Hamiltonian to an equivalent classical model. This allows us to use classical Monte Carlo

cluster algorithms that require considerably less numerical effort. Mapping the quantum 3D

TFIM to a classical model involves extending the dimensionality of the system. According

to the quantum-classical correspondence, the thermodynamic behavior of a 𝑑-dimensional

quantum system can be mapped to that of a (𝑑 + 1)-dimensional classical system [7]. Thus,

we map the 3D TFIM (1) to a 4D classical Ising model on a hypercubic lattice. This system

has 3 spatial dimensions that correspond to the single strongly-coupled direction labeled by 𝑠

and two weakly coupled directions labeled by ⊥. The fourth dimension represents imaginary

time 𝜏 [8]. The 4D classical Ising model Hamiltonian reads

𝐻 = −𝐽𝑠
∑︁

⟨𝑖, 𝑗⟩𝑠 ,𝜏
𝜖𝑖𝜖 𝑗𝑆𝑖,𝜏𝑆 𝑗 ,𝜏 − 𝐽⊥

∑︁
⟨𝑖, 𝑗⟩⊥,𝜏

𝜖𝑖𝜖 𝑗𝑆𝑖,𝜏𝑆 𝑗 ,𝜏 − 𝐽𝜏
∑︁
𝑖,𝜏

𝜖𝑖𝑆𝑖,𝜏𝑆𝑖,(𝜏+1) . (2)

Here 𝑖 and 𝑗 denote spatial lattice sites, and 𝜏 is the imaginary time coordinate. The first term

considers the couplings in the strong spatial direction, indexed by ⟨𝑖, 𝑗⟩𝑠, with an interaction

strength 𝐽𝑠. The second term contains the interactions in the weak spatial directions, and

the last term is the interaction in the imaginary time direction. 𝑆𝑖,𝜏 indicates the classical

Ising spin at each remaining magnetic site. Geometrically, the anisotropic 3𝐷 quantum



30

system of size 𝐿𝑠 × 𝐿2
⊥ can be mapped to that of the hypercubic 4𝐷 classical system of size

= 𝐿𝑠 × 𝐿2
⊥ × 𝐿𝜏. Here, 𝐿𝑠 is the length of the strongly coupled chains. Similarly, 𝐿⊥ is the

system size in the two weak spatial directions. 𝐿𝜏 is the site in the imaginary time direction.

The interactions 𝐽𝑠 and 𝐽⊥ in the classical Hamiltonian are related to 𝐽𝑠, 𝐽⊥ of the quantum

model (1). Analogously, the value of the imaginary-time interaction 𝐽𝜏 is determined by

the transverse-field strength 𝐵. As we are interested in the universal properties of the phase

transition, the exact values are unimportant. We therefore fix 𝐽𝑠 = 𝐽𝜏 = 1 and use 𝐽⊥ to

control the spatial anisotropy. The transition is tuned via the temperature of the classical

model, 𝑇eff. It differs for the temperature of the original quantum model, which remains at

zero [7].

2.2 SITE DILUTION

Quenched disorder is implemented as site dilution by substituting magnetic sites for

non-magnetic vacancies. This is delivered via the independent quenched random variables

𝜖𝑖. They take the values 0 (vacancy) with probability 𝑝 and 1 (magnetic site) with probability

1 − 𝑝. Thus, the value 𝑝 indicates the concentration of the vacancies. As the vacancy

positions are independent of time, the disorder is columnar, i.e, perfectly correlated in

the imaginary time direction. The simulations shown in this work are taken at a value of

𝑝 = 0.10, effectively substituting 10% of magnetic sites with vacancies. This relatively

small value for 𝑝 is chosen, to allow the strongly coupled magnetic sites to still form chains

of a significant length. This, in principle, permits observables to feature one-dimensional

behavior, at least in a transient regime (as observed in the experiment on the clean compound

[2]).
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2.3 CLASSICAL TEST

In addition to the quantum model discussed above, we prepare a classical model to

study the effects of increased anisotropy on the correlations between the strongly coupled

chains in the system. For the analysis of these effects, we employ a classical, 3D, anisotropic,

site-diluted Ising Hamiltonian,

𝐻 = −𝐽𝑠
∑︁
⟨𝑖, 𝑗⟩𝑠

𝜖𝑖𝜖 𝑗𝑆𝑖𝑆 𝑗 − 𝐽⊥
∑︁
⟨𝑖, 𝑗⟩⊥

𝜖𝑖𝜖 𝑗𝑆𝑖𝑆 𝑗 . (3)

It takes a similar form to (2), where the only difference is the removal of the imaginary time

direction 𝜏, and the corresponding interactions. To test the effects of anisotropy on this

system, we consider increasingly large ratio 𝐽𝑠/𝐽⊥ and consider their effects on the magnetic

correlations. This analysis is presented in a later section.

3. MONTE CARLO SIMULATIONS

3.1 ALGORITHM

The computer simulations reported in this paper have been performed by employing

large-scale Monte Carlo simulations of the mapped classical Ising model (2). The appropriate

choice of algorithm is paramount for the efficiency of the simulations. We utilize a hybrid

approach, combining the Wolff cluster [9] and Metropolis single-spin flip [10] algorithms.

The Wolff algorithm greatly reduces the critical slowing down of the system near criticality

and enables us to study larger systems at a reasonable computational cost. However, in the

presence of site dilution, the Wolff algorithm alone is insufficient, as it may fail to update

small, isolated spin clusters that are disconnected from the main lattice. To address this, we

pair this algorithm with Metropolis single-spin updates which consider all sites, including

those disconnected from the main lattice. Thus, a full Monte Carlo sweep consists of one
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Figure 2. Order parameter and Energy versus the number of Monte Carlo sweeps for a single
sample. Mapped classical system evaluated with optimal geometry: 𝐿𝑚𝑎𝑥𝜏 = 3080 = 11𝐿𝑠 =
440𝐿⊥. 𝐽𝑠 = 𝐽𝜏 = 100𝐽⊥, 𝑇 = 2.22.

Wolff cluster sweep [9] followed by one Metropolis sweep over the lattice [10]. This two-step

approach ensures that all regions of the lattice, including isolated clusters, are adequately

equilibrated, thereby achieving more accurate results.

3.2 EQUILIBRATION AND MEASUREMENT

The simulation process begins with an equilibration phase, where the system

undergoes a series of sweeps until it reaches a steady state. We establish an equilibration

threshold by comparing runs employing hot starts (random initial spin configurations) and

cold starts (all spins aligned). Figure 2 illustrates the equilibration process, by showing

the order parameter 𝑚 and energy 𝐸 versus the number of Monte Carlo sweeps. When

values from both starting conditions converge and remain stable, the system is considered

equilibrated.

For the 3D classical case, the system equilibrates after approximately 300 sweeps ,

while for the quantum case mapped to a 4D Ising model, 500 sweeps are required due to the

additional complexity introduced by quantum fluctuations. Both of these values are obtained
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for the maximum system size considered in this study. Based on these observations, we

perform 1000 equilibration sweeps followed by 500 measurement sweeps in the production

runs with measurements taken after each (measurement) sweep.

The quenched disorder creates additional sample-to-sample variations of the results

in our system. To suppress the disorder fluctuations, all physical quantities are averaged over

2000 to 20, 000 independent disorder configurations for each system size. Statistical errors

of the observables are obtained from the statistics of the sample-to-sample fluctuations.

Simulating a large number of disorder configurations using relatively short Monte-Carlo

runs has been shown to reduce the overall statistical error for a given numerical effort [11].

3.3 DATA ANALYSIS

A variety of observables are considered in this paper to investigate the critical

behavior of the system. The order parameter 𝑚 is defined as,

𝑚 =
1

𝑁mag

∑︁
𝑖,𝜏

𝜖𝑖𝑆𝑖,𝜏 . (4)

Here, 𝑁mag is the number of magnetic sites and 𝑁imp is the number of impurities from

site dilution. They fulfill 𝑁 = 𝑁mag + 𝑁imp where 𝑁 is the total number of sites. The

susceptibility 𝜒 is given by,

𝜒 = [𝑁mag𝛽(⟨𝑚2⟩ − ⟨𝑚⟩2)]𝑑𝑖𝑠 (5)

where ⟨. . . ⟩ indicates the thermodynamic average over the Monte Carlo measurement sweeps.

[. . . ]dis denotes the average over the disorder configurations considered. The susceptibility

is expected to diverge at the critical point, an indication of a phase change.
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Figure 3. Binder crossing of the mapped 4D Ising model. Magnetic sites have interaction
strengths 𝐽𝑠 = 𝐽𝜏 = 1 = 100𝐽⊥ and the dilution is 𝑝 = 0.1. The sample geometry is given
by 𝐿𝑠 = 40𝐿⊥. The imaginary time size (see Sec 3.4.2) corresponds to the optimal shapes
𝐿𝜏 = 𝐿max

𝜏 (values given in Table 3). Error bars indicate statistical error over disorder
configurations. The line between the data points serves as a visual aid.

A more robust method of determining the location of the critical point is based on

calculating the Binder cumulant, which is defined as

𝑔 =

[
1 − ⟨|𝑚 |4⟩

3⟨|𝑚 |2⟩2

]
dis
. (6)

At the critical temperature 𝑇𝑐 the Binder cumulant is expected to be scale invariant, it thus

takes a single value for all spatial system sizes 𝐿 for a given sample shape. The quantum

critical point is determined by plotting 𝑔 vs. 𝑇eff for all system sizes (at their respective

optimal shapes, see Sec 3.4.2), and identifying the crossing point. An example of this

analysis is given in Figure 3.

3.4 SAMPLE GEOMETRY

3.4.1. Effects of High Anisotropy. In the presence of strong spatial anisotropy,

samples with 𝐿𝑠 = 𝐿⊥ are not ideal for the Monte Carlo simulations. This issue arises

because the magnetic correlations decay much more slowly in the strongly coupled direction

than in the weak directions. To address this, we adjust the aspect ratio by elongating the
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Table 1. Interaction anisotropy and corresponding system size ratio. Values taken for clean
system 𝑝 = 0

𝐽⊥/𝐽𝑠 𝐿𝑠/𝐿⊥

0.04 2
0.033 3
0.01 5

0.001 10

lattice in the direction of strong coupling. This transformation results in a 𝐿𝑠 × 𝐿⊥ × 𝐿⊥

bar geometry with 𝐿𝑠 > 𝐿⊥. In the clean case, 𝑝 = 0. we have used ratios 𝐿𝑠/𝐿⊥ from 2

to 10, depending on the strength of the anisotropy, as shown in Table 1. This enhances the

visibility of phase transitions as the Binder crossing is roughly in the middle between 𝑔 = 0

and 2/3. When dilution is considered 𝑝 > 0, the site vacancies further inhibit the magnetic

interaction in the strongly coupled direction, requiring an even large scale factor to enhance

the visibility of the transition. For this reason, a ratio 𝐿𝑠/𝐿⊥ = 40 is used, for the system

with a vacancy concentration 𝑝 = 0.1 and 𝐽⊥ = 0.01. Note that the ratio 𝐿𝑠/𝐿⊥ is kept fixed

as the system size is varied because both 𝐿𝑠 and 𝐿⊥ are (spatial) lengths and have the same

scale dimension.

3.4.2. Imaginary Time. Generally, in the disordered system, the lengths in the

spatial dimensions, 𝐿𝑠 and imaginary time, 𝐿𝜏, need to be treated as independent parameters.

This comes from the fact that the disorder, which is perfectly correlated in imaginary time,

but uncorrelated in space, breaks the symmetry between space and time. In disordered

quantum Ising systems, correlations in space and time are expected to be related by activated

scaling where the correlation length scales logarithmically with time 𝜉𝜓 ∝ ln(𝜉𝜏) rather than

following conventional power law scaling 𝜉𝑧 ∝ 𝜉𝜏. The expected activated scaling behavior

leads to the finite-size scaling form

𝑔𝑎𝑣 = 𝑔̃𝐴 (𝑡𝐿1/𝜈, ln(𝐿𝜏)/𝐿𝜓) (7)
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. This differs from the finite-size scaling form for conventional dynamical scaling

𝑔𝑎𝑣 = 𝑔̃𝐴 (𝑡𝐿1/𝜈, 𝐿𝜏/𝐿𝑧). (8)

The value of 𝜓 (or 𝑧) is not known a priori and needs to be found together with the critical

point in the simulations. An approach from Vojta et al. [11] is followed to determine the so

called ’optimal’ value of 𝐿𝜏. This is the value, where, for a particular spatial system size 𝐿,

the ratio 𝐿𝜏/𝐿 roughly corresponds to the ratio of correlation lengths in time and space 𝜉𝜏/𝜉.

The optimal value of 𝐿𝜏 is determined from analyzing the parabolic nature of the function

𝑔𝑐 (𝐿𝜏), for constant 𝐿. This function has its maximum at position 𝐿𝑚𝑎𝑥𝜏 which indicates

the optimal sample shape. Moreover, for samples of optimal shape (𝐿𝜏 = 𝐿𝑚𝑎𝑥𝜏 ) the value

of 𝑔 is independent of 𝐿 at 𝑇eff
𝑐 . By iteratively evaluating 𝑔𝐶 for all 𝐿𝜏 considered, we can

assemble a parabolic plot as is shown in Figure 4. To determine the maximum of 𝑔𝑐 (𝐿𝜏),

we perform a parabolic fit of the simulation results according to

𝑔𝑐 (𝐿) = 𝐶 − 𝐴(ln(𝐿) − ln(𝐿𝑚𝑎𝑥𝜏 ))2 (9)

Figure 4. Binder cumulant at 𝑇eff = 2.21, 𝑝 = 0.10, 𝐽⊥ = 0.01. Error bars indicate
uncertainty in 𝑔𝑐 obtained from the standard deviation over disorder realizations. Dashed
vertical line indicates maximum obtained via fitting to (9).
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Figure 5. Calculated susceptibility ln(𝜒) vs temperature − ln(𝑇) + 2/𝑇 . Straight line
indicates agreement with 1D functional form (7). Clean 3D classical Ising system 𝑝 = 0
with high anisotropy 𝐽𝑠 = 100𝐽⊥.

where 𝐶, 𝐴 and the maximum position ln(𝐿𝑚𝑎𝑥𝜏 ) are fitting parameters. Performing

this for the set of system sizes we consider in this study, the values of 𝐿max
𝜏 can be extracted.

This is a computationally involved process that is summarized in Table 2. Note that setting

𝐿𝜏 to its optimal value 𝐿max
𝜏 fixes the second argument in the scaling functions (8) and (9).

The further data analysis then follows the usual one-parameter scaling in terms of 𝑡𝐿1/𝜈.

Table 2. Steps to determine critical temperature 𝑇𝑐 and optimal shapes 𝐿𝑚𝑎𝑥𝜏 , see Ref [11].
sc𝑥 is the fixed scale factor discussed in Sec. 3.4.1.

gc vs L𝜏 construction
1. Select system size 𝐿: 𝐿⊥ = 𝐿, 𝐿𝑠 = 𝑠𝑐𝑥 ∗ 𝐿.
2. Select initial imaginary time size 𝐿𝜏: 𝐿𝜏 = 𝐿𝑠.
3. Select Effective Temperature Range: 𝑇eff = [𝑇eff

− , 𝑇eff
+ ].

4. Identify Critical Point: Plot 𝑔 vs 𝑇eff for all 𝐿. Approximate crossing
occurs at 𝑔𝑐 and 𝑇eff

𝑐 .
5. Repeat: Set an increased 𝐿𝜏 and repeat from step 3.
6. Plotting: Plot 𝑔𝑐 vs 𝐿𝜏 for each 𝐿 and identify common 𝑔𝑚𝑎𝑥𝑐 and
corresponding optimal time size 𝐿𝑚𝑎𝑥𝜏 .
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Figure 6. Binder cumulant 𝑔𝑐, taken with varying effective temperature, plotted for various
𝐿𝜏. The dilution 𝑝 = 0.1, with interaction strengths 𝐽𝑠 = 𝐽𝜏 = 100𝐽⊥. (a) 𝑇 < 𝑇𝑐 .(𝑏)𝑇 = 𝑇𝑐 .

(c)𝑇 > 𝑇𝑐.

4. RESULTS

4.1 ONE-DIMENSIONAL BEHAVIOR

The magnetic interactions in cobalt niobate are highly anisotropic. We first employ

the classical model (5) to verify that an anisotropy similar to the experimental one [2, 12] leads

to one-dimensional behavior in the absence of dilution. To do so, we compare the calculated

susceptibility for our system for different 𝐽⊥ with the exact classical one-dimensional result

calculated for example by Pathria [13],

𝜒 ∝ 1
𝑇

exp( 2
𝑇
). (10)

Figure 5 shows the result of our simulations for 𝐽⊥ = 0.01, indicating an excellent agreement

with the functional form for a one-dimensional Ising chain.

4.2 FINDING THE CRITICAL POINT 𝑇eff
𝑐

The critical point 𝑇eff
𝑐 is determined via an iterative multi-step approach together

with the optimal 𝐿𝜏. For each system size 𝐿, we begin by determining the optimal values

of 𝐿𝜏 at several temperatures around the transition, following the approaches detailed in
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Table 3. Extracted optimal 𝐿𝜏 values for each 𝐿𝑠 considered. 𝑇 = 2.215, 𝑝 = 0.1 and
𝐽 = 𝐽𝜏 = 100𝐽⊥.

𝐿𝑠 𝐿𝑚𝑎𝑥𝜏 𝐿𝑚𝑎𝑥𝜏 /𝐿𝑠
160 663(6) 4.14(3)
200 1158(14) 5.79(6)
240 1750(33) 7.79(13)
280 2921(94) 10.43(31)

Sections 3.3 and 3.4.2, summarized in Table 2. The results of this analysis for the disordered

quantum system are given in Figure 6. For 𝑇eff < 𝑇𝑐 the maximum g of each parabola

increases with increasing system size (indicating scaling towards the ordered phase), as in

Figure 6a. For 𝑇eff > 𝑇𝑐, in contrast, the maximum 𝑔 decreases with size as the system scales

towards the paramagnetic phase (Figure 6c). Right at 𝑇𝑐, the maximum is site-independent,

as shown in Figure 6b. Based on this analysis, optimal values of 𝐿𝜏 at the estimated 𝑇eff
𝑐

are selected for each spatial system size 𝐿, which are given in Table 3. An accurate value

of 𝑇𝑐 is then determined by identifying the crossing of the Binder cumulant curves (for the

optimal shapes), with respect to temperature, for all 𝐿, as is done in Figure 3. From this

analysis, the critical temperature for 𝑝 = 0.1 and 𝐽⊥ = 0.01 is found to be 𝑇𝑐 = 2.215

4.3 TESTING ACTIVATED SCALING

After identifying the critical point, we now turn to analyzing its critical behavior.

We start with the dynamical scaling. Figure 7 shows a scaling plot of the Binder cumulant

at 𝑇𝑐 according to activated scaling (7). The parabolas for different system sizes collapse

well within their error bars. In contrast, a scaling plot according to power-;aw scaling (8),

does not lead to a good collapse, but the domes broaden with increasing 𝐿. This observation

serves as a sign of the unconventional scaling behavior of this system. The values of the

optimal 𝐿𝜏 in Table 3 allow us to determine the tunneling exponent 𝜓, considering the

activated scaling relation [11]
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Figure 7. 𝑔𝑐/𝑔𝑚𝑎𝑥𝑐 vs ln(𝐿𝜏)/ln(𝐿𝑚𝑎𝑥𝜏 ) for multiple system sizes at the critical point
𝑇eff = 2.215. In this study we consider ratios, of 𝐿𝜏/𝐿 ranging from 1 − 26, allowing the
full parabolic nature of 𝑔(𝐿𝜏) to be seen. As can be seen, the parabolas collapse on one
another with increasing 𝐿𝑠.

ln(𝐿𝑚𝑎𝑥𝜏 ) ∝ 𝐿
𝜓
𝑠 . (11)

The data and fit are shown in Figure 8, yielding

𝜓 = 0.36(4). (12)

The fit is performed via a non-linear least squares routine that returns the desired fitting

parameters in addition to the covariance matrix. The square root of the diagonal elements

in the covariance matrix correspond to the single standard-deviation uncertainties for each

fitting parameter, indicated by the (. . . ) in equation (12) for the last digits.

4.4 CORRELATION LENGTH EXPONENT

An equation for an additional critical exponent can be found by differentiating the

finite-size scaling form in equation (7), with respect to 𝑇eff. This yields

𝑑𝑔

𝑑𝑇eff ∝ 𝐿
1/𝜈
𝑠 (13)
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Figure 8. ln(𝐿𝑚𝑎𝑥𝜏 ) vs 𝐿𝜓𝑠 taken at the critical point 𝑇eff = 2.215. The solid line is a fit of the
data with 𝑙𝑛(𝐿max

𝜏 ) = 𝐶 + 𝐴𝐿𝜓 yielding 𝐶 = 0.3, 𝐴 = 1 and 𝜓 = 0.36(4).

which holds at the critical point 𝑇eff = 𝑇𝑐. 𝑑𝑔

𝑑𝑇
can be evaluated from the simulation data by

fitting a linear dependence near the critical point. To evaluate 𝜈, we plot 𝑑𝑔(𝐿𝑠)
𝑑𝑇eff versus 𝐿𝑠

values and analyze the scaling behavior as shown in Figure 9 2. A fit with the power law (13)

gives 1/𝜈 = 1.025(6) and consequently,

𝜈 = 0.98(2). (14)

4.5 ORDER PARAMETER EXPONENT

To determine a complete set of critical exponents, we also consider the order

parameter. The scaling behavior for the order parameter at the critical point follows from its

finite-size scaling form

𝑚 = 𝐿
𝛽/𝜈
𝑠 𝑚̃𝐴 (𝑡𝐿1/𝜈, ln(𝐿𝜏/𝐿𝜓)), (15)

2𝑑𝑔/𝑑𝑇eff is obtained via a linear fit very close to the critical point. Errors for each point are found by
considering the error associated with each 𝑔 value Δ𝑔. By plotting 𝑔 + Δ𝑔 close to the critical point, a linear fit
yields an alternative slope 𝑑 (𝑔 + Δ𝑔)/𝑑𝑇 . Error for 𝑑𝑔/𝑑𝑇 , Δ 𝑑𝑔

𝑑𝑇
is then taken as the difference of these slopes,

Δ
𝑑𝑔

𝑑𝑇
= | 𝑑𝑔

𝑑𝑇
− 𝑑 (𝑔+Δ𝑔)

𝑑𝑇
|.
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Figure 9. ln( 𝑑𝑔

𝑑𝑇eff ) vs ln(𝐿𝑠) at the critical point 𝑇eff = 𝑇𝑐. Line is a fit with equation (12).
From this fit 𝜈 = 0.98(2) is extracted.

which implies the relation

𝑚 ∝ 𝐿
𝛽/𝜈
𝑠 (16)

at criticality, 𝑡 = 0 and 𝐿𝜏 = 𝐿max
𝜏 . Thus, we evaluate 𝑚 for varying 𝐿𝑠 at their

respective optimal sizes 𝐿𝜏 (𝐿𝑠) at the critical point. Figure 10 shows a plot of this result,

where a fit corresponding to equation (15) is performed. This analysis yields, 𝛽
𝜈
= 1.94(12),

which gives from equation (13),

𝛽 = 1.89(11). (17)

4.6 DISCUSSION

To identify the universality class of the quantum phase transition studied in this work,

we compare our calculated critical exponents with those obtained in previous work for the

disordered transverse-field Ising model in three dimensions. We also compare with the

three-dimensional disordered contact process which is expected to be in the same universality

class.
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Figure 10. Order parameter 𝑚 vs 𝐿𝑠 at the critical point 𝑇eff = 𝑇𝑐. The line is a fit with (15)
from which 𝛽/𝜈 = 1.94(12) is extracted. Error bars indicate calculated uncertainty over
disorder realizations. Both axes are on a logarithmic scale.

The critical exponents calculated for our system are in good agreement with those

found in previous work for 3D systems as shown in Table 4. They however, do not agree with

the exponents of the 1D-TFIM observed for the pure system. Thus, we have demonstrated

that the critical behavior of the site-diluted, strongly anisotropic quasi-1D Ising model

belongs to the same universality class as that of the generic disordered 3D transverse-field

Ising model.

Table 4. Critical exponents for the site diluted quasi-one-dimensional transverse-field Ising
model (this work) compared to the 3D disordered contact process [14], strong-disorder
renormalization group prediction for the 3D transverse-field Ising model [15], and 1D
transverse-field Ising model [16].

Source 𝜓 𝜈 𝛽

This Work 0.36(4) 0.98(2) 1.89(11)
Ref [14] 0.38(3) 0.98(6) 1.87(7)
Ref [15] 0.46(2) 0.99(2) 1.82(4)
Ref [16] 1/2 2 (3-

√
5)/2
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5. CONCLUSIONS

In this paper, we constructed a simple model to characterize the magnetic quantum

phase transition of cobalt niobate with magnetic site dilution. We execute this by considering

a 3𝐷 transverse-field Ising model, with high spatial anisotropy, that we map to a 4D classical

Ising model. Through Monte Carlo simulations, we are able to analyze the magnetic

properties at the quantum critical point and study this transition and its scaling behavior.

The transition is analyzed by calculating various thermodynamic quantities at the

critical point. Using finite-size scaling, we study the variation of these quantities with

both the spatial length and imaginary time length of the sample. The results indicate

unconventional scaling associated with an infinite-randomness fixed point. By utilizing

activated scaling relations, we calculate three critical exponents that describe the universality

class of the transition in our system. We find that the critical exponents agree excellently

with those published in the literature for the disordered 3D transverse-field Ising universality

class.

This is an interesting result, particularly in view of the observation of 1D critical

behavior in the clean undiluted cobalt niobate. We emphasize that the behavior corresponding

with the one-dimensional TFIM observed in experiment, does not translate well to the

disordered system due to the inability to establish long-range magnetic order along the chains

in the presence of vacancies. Our results confirm the notion that long-range order in the

diluted system crucially depends on the weak interchain interactions and is thus intrinsically

three-dimensional. We hope that this work inspires further experiments into diluted cobalt

niobate, such that the predictions made here can be tested.
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Krizan, R. J. Cava, T. M. McQueen, S. M. Koohpayeh, Ribhu K. Kaul, and N. P.
Armitage. Duality and domain wall dynamics in a twisted kitaev chain. Nature Physics,
17(7):832–836, April 2021.

[6] R. J. Elliott, P. Pfeuty, and C. Wood. Ising model with a transverse field. Phys. Rev.
Lett., 25:443–446, Aug 1970.

[7] Subir Sachdev. Quantum Phase Transitions. Cambridge University Press, 2 edition,
2011.

[8] Thomas Vojta. Phases and phase transitions in disordered quantum systems. AIP
Conference Proceedings, 1550(1):188–247, 08 2013.

[9] Ulli Wolff. Comparison between cluster monte carlo algorithms in the ising model.
Physics Letters B, 228(3):379–382, 1989.

[10] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21(6):1087–1092, 06 1953.

[11] Thomas Vojta and Rastko Sknepnek. Quantum phase transitions of the diluted o(3)
rotor model. Phys. Rev. B, 74:094415, Sep 2006.
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. SECTION

2. CONCLUSIONS

This work details an investigation into the effects of site dilution and anisotropy on

the critical behavior of varying Ising systems. Beginning from a simple one-dimensional

classical Ising chain, systems of increasing complexity are studied, up to a three-dimensional

disordered quantum Ising system. The principles developed here are then applied towards

modeling the quantum phase transition of diluted cobalt niobate. The following paragraphs

will summarize this work and our findings.

In the first section, the magnetic phase transitions of the classical one- and two-

dimensional Ising systems, with periodic boundary conditions, are evaluated, where we

validate Ising and Onsager’s exact solutions, respectively. To facilitate the investigation

of more complex systems, such as those in three dimensions, Monte Carlo methods are

introduced, which are used consistently through the remainder of this work to obtain

approximate solutions of the critical points. Quenched disorder is then introduced in the

form of random site dilution (i.e. randomly placed vacancies that are substituted for magnetic

sites). The significant effects of the disorder on the system are then illustrated through the

construction of the magnetic phase boundary for the diluted three-dimensional classical

Ising system, and the Harris criterion is employed to study its influence on critical points.

Finally, what is learned is applied to the transverse-field Ising model, laying the groundwork

for studying quantum phase transitions.

In Paper I, we propose a model to allow for the investigation into the quantum critical

behavior of the disordered cobalt niobate magnetic system. Such a model, is constructed

from a disordered three-dimensional transverse-field Ising model that is mapped onto a

four-dimensional classical Ising system for numerical efficiency. The spatial anisotropy
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observed in experiments for this system is implemented via one-dimensional chains of

strongly coupled magnetic sites that are weakly connected in the remaining two directions.

The magnetic properties for systems of varying sizes are characterized and measured close to

the quantum phase transition via large-scale Monte Carlo simulations. The scaling behavior

of the magnetic quantities close to the quantum critical point is studied. A trio of critical

exponents is extracted, which are used to determine the universality class for the quantum

phase transition. An unconventional activated scaling relation is discovered, characterized

by a tunneling exponent 𝜓 = 0.36(4). This implies that the quantum critical point is of

infinite-randomness type. We additionally determine the values for the correlation length

exponent 𝜈 = 0.98(2) and order parameter exponent 𝛽 = 1.89(11). This set of critical

exponents, as shown in Table 4, are in good agreement with previously obtained values from

literature for the three-dimensional disordered contact process [17] and three-dimensional

transverse-field Ising model [18].

In summary, this work gives an introduction to the Ising model and how it is used

to model magnetic phase transitions for a variety of systems. Beginning with variations

to the systems dimensionality, increasingly complex modifications are made incorporating

anisotropy, disorder, and quantum effects. All three of these complications, are exhibited

by disordered cobalt niobate, which we present a model and analysis for here. This work

illustrates the diverse range of solutions and behavior for Ising models and should motivate

additional investigations into the fascinating critical behavior exhibited by systems that

couple disorder and anisotropy.
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